The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
require(mgc)
require(ggplot2)
n=400
d=1
plot_sim <- function(X, Y, name) {
if (!is.null(dim(Y))) {
Y <- Y[, 1]
}
data <- data.frame(x1=X[,1], y=Y)
ggplot(data, aes(x=x1, y=y)) +
geom_point() +
xlab("x") +
ylab("y") +
ggtitle(name) +
theme_bw()
}
plot_sim_func <- function(X, Y, Xf, Yf, name, geom='line') {
if (!is.null(dim(Y))) {
Y <- Y[, 1]
Yf <- Yf[, 1]
}
if (geom == 'points') {
funcgeom <- geom_point
} else {
funcgeom <- geom_line
}
data <- data.frame(x1=X[,1], y=Y)
data_func <- data.frame(x1=Xf[,1], y=Yf)
ggplot(data, aes(x=x1, y=y)) +
funcgeom(data=data_func, aes(x=x1, y=y), color='red', size=3) +
geom_point() +
xlab("x") +
ylab("y") +
ggtitle(name) +
theme_bw()
}
In this notebook, we will review the simulation algorithms provided in the mgc
paper. All simulations will be n=400
examples in d=1
dimensions, since some of the plots do not look obviously of the given simulation type in higher dimensions. The simulation is plotted along with the true distribution of the given simulation where possible.
data <- mgc.sims.linear(n, d)
X <- data$X; Y <- data$Y
func <- mgc.sims.linear(n, d, eps=0)
Xf <- func$X; Yf <- func$Y
plot_sim_func(X, Y, Xf, Yf, "Linear Simulation")
data <- mgc.sims.exp(n, d)
X <- data$X; Y <- data$Y
func <- mgc.sims.exp(n, d, eps=0)
Xf <- func$X; Yf <- func$Y
plot_sim_func(X, Y, Xf, Yf, "Exponential Simulation")
data <- mgc.sims.cubic(n, d)
X <- data$X; Y <- data$Y
func <- mgc.sims.cubic(n, d, eps=0)
Xf <- func$X; Yf <- func$Y
plot_sim_func(X, Y, Xf, Yf, "Cubic Simulation")
data <- mgc.sims.joint(n, d)
X <- data$X; Y <- data$Y
plot_sim(X, Y, "Joint-Normal Simulation")
# Step
data <- mgc.sims.step(n, d)
X <- data$X; Y <- data$Y
func <- mgc.sims.step(n, d, eps=0)
Xf <- func$X; Yf <- func$Y
plot_sim_func(X, Y, Xf, Yf, "Step-Fn Simulation")
data <- mgc.sims.quad(n, d)
X <- data$X; Y <- data$Y
func <- mgc.sims.quad(n, d, eps=0)
Xf <- func$X; Yf <- func$Y
plot_sim_func(X, Y, Xf, Yf, "Quadratic Simulation")
data <- mgc.sims.wshape(n, d)
X <- data$X; Y <- data$Y
func <- mgc.sims.wshape(n, d, eps=0)
Xf <- func$X; Yf <- func$Y
plot_sim_func(X, Y, Xf, Yf, "W Simulation")
data <- mgc.sims.spiral(n, d)
X <- data$X; Y <- data$Y
func <- mgc.sims.spiral(n=1000, d, eps=0)
Xf <- func$X; Yf <- func$Y
plot_sim_func(X, Y, Xf, Yf, "Spiral Simulation", geom='points')
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.