The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
You can install the development version from GitHub with:
# install.packages("devtools")
::install_github("mwheymans/miceafter") devtools
You can install mice with:
install.packages("mice")
lbp_orig is a dataset that is part of the miceafter package with
missing values. So we first impute them with the mice
function. Than we use the mids2milist
function to turn a
mids
object, as a result of using mice
, into a
milist
object with multiply imputed datasets. Than we use
the with
function to apply repeated logistic regression
analyses. With the pool_glm
function we obtain the results
for the pooled model.
library(mice)
library(miceafter)
<- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE)
imp
<- mids2milist(imp)
dat_imp
<- with(dat_imp, expr = glm(Chronic ~ factor(Carrying) + Gender + Smoking +
ra + JobControl + JobDemands + SocialSupport,
Function family = binomial))
<- pool_glm(ra, method="D1")
poolm $pmodel
poolm#> term estimate std.error statistic df p.value
#> 1 (Intercept) -2.40338191 2.74423975 -0.87579152 84.20120 0.383634957
#> 2 Gender -0.28670287 0.44435492 -0.64521143 141.73082 0.519833276
#> 3 Smoking 0.04202166 0.36469966 0.11522264 147.58067 0.908425278
#> 4 Function -0.05363049 0.04956821 -1.08195346 107.14308 0.281702325
#> 5 JobControl -0.00173824 0.02061271 -0.08432858 129.67391 0.932925243
#> 6 JobDemands 0.01498679 0.04353545 0.34424352 56.23643 0.731947115
#> 7 SocialSupport 0.05310413 0.05999722 0.88510971 131.15846 0.377717252
#> 8 factor(Carrying)2 1.34848097 0.55234977 2.44135336 55.53348 0.017845620
#> 9 factor(Carrying)3 2.12170752 0.63137426 3.36045934 31.10486 0.002072278
#> OR lower.EXP upper.EXP
#> 1 0.09041167 0.0003857145 21.192541
#> 2 0.75073476 0.3118843294 1.807089
#> 3 1.04291707 0.5072829086 2.144121
#> 4 0.94778225 0.8590808969 1.045642
#> 5 0.99826327 0.9583722748 1.039815
#> 6 1.01509966 0.9303289078 1.107595
#> 7 1.05453944 0.9365209770 1.187430
#> 8 3.85157044 1.2735219585 11.648480
#> 9 8.34537526 2.3029413419 30.241885
$pmultiparm
poolm#> p-values D1 F-statistic
#> Gender 0.518810621 0.416297788
#> Smoking 0.908268699 0.013276257
#> Function 0.279775979 1.170623285
#> JobControl 0.932805433 0.007111309
#> JobDemands 0.731342832 0.118503602
#> SocialSupport 0.376212395 0.783419204
#> factor(Carrying) 0.002402598 6.548057457
Back to Examples
The lbp_orig is a dataset that is part of the miceafter package with
missing values. So we first impute them with the mice
function. Than we use the mids2milist
function to turn a
mids
object, as a result of using mice
, into a
milist
object with multiply imputed datasets. Than we use
the with
function to apply repeated linear regression
analyses. With the pool_glm
function we obtain the results
for the pooled model.
library(mice)
library(miceafter)
<- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE)
imp
<- mids2milist(imp)
dat_imp
<- with(dat_imp, expr = glm(Pain ~ factor(Carrying) + Gender + Smoking +
ra + JobControl + JobDemands + SocialSupport))
Function
<- pool_glm(ra, method="D1")
poolm $pmodel
poolm#> term estimate std.error statistic df p.value
#> 1 (Intercept) 5.890240724 2.23539512 2.63498863 128.45105 0.0094493646
#> 2 Gender -0.390855578 0.39833904 -0.98121335 107.45765 0.3286915488
#> 3 Smoking -0.175561523 0.31782610 -0.55238234 121.15417 0.5817040589
#> 4 Function -0.044340247 0.04278381 -1.03637903 88.25400 0.3028567022
#> 5 JobControl -0.030759130 0.01776239 -1.73170044 112.07495 0.0860784235
#> 6 JobDemands 0.030146930 0.03415546 0.88263875 112.08333 0.3793205875
#> 7 SocialSupport 0.002649424 0.05530205 0.04790825 59.62119 0.9619494899
#> 8 factor(Carrying)2 0.614705092 0.42825620 1.43536764 72.28901 0.1554952062
#> 9 factor(Carrying)3 1.735801455 0.44486453 3.90186524 110.28285 0.0001645841
#> 2.5 % 97.5 %
#> 1 1.46727777 10.313203676
#> 2 -1.18047780 0.398766644
#> 3 -0.80477403 0.453650982
#> 4 -0.12936067 0.040680181
#> 5 -0.06595276 0.004434502
#> 6 -0.03752718 0.097821042
#> 7 -0.10798560 0.113284450
#> 8 -0.23894973 1.468359916
#> 9 0.85420951 2.617393395
$pmultiparm
poolm#> p-values D1 F-statistic
#> Gender 0.326939540 0.9627796
#> Smoking 0.580814131 0.3051262
#> Function 0.300938676 1.0740815
#> JobControl 0.083815260 2.9987864
#> JobDemands 0.377767222 0.7790512
#> SocialSupport 0.961870518 0.0022952
#> factor(Carrying) 0.001186615 7.2100032
Back to Examples
We follow the same procedure as the first example but also apply model selection here.
library(mice)
library(miceafter)
<- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE)
imp
<- mids2milist(imp)
dat_imp
<- with(dat_imp, expr = glm(Chronic ~ factor(Carrying) + Gender + Smoking +
ra + JobControl + JobDemands + SocialSupport,
Function family = binomial))
<- pool_glm(ra, method="D1", p.crit = 0.15, direction = "BW")
poolm #> Removed at Step 1 is - JobControl
#> Removed at Step 2 is - Smoking
#> Removed at Step 3 is - JobDemands
#> Removed at Step 4 is - Gender
#> Removed at Step 5 is - SocialSupport
#> Removed at Step 6 is - Function
#>
#> Selection correctly terminated,
#> No more variables removed from the model
$pmodel
poolm#> term estimate std.error statistic df p.value
#> 1 (Intercept) -1.653325 0.4191626 -3.944353 69.55580 1.885794e-04
#> 2 factor(Carrying)2 1.474823 0.5130543 2.874595 73.06998 5.295555e-03
#> 3 factor(Carrying)3 2.347491 0.5427445 4.325223 48.89222 7.486964e-05
#> OR lower.EXP upper.EXP
#> 1 0.1914124 0.08295868 0.4416499
#> 2 4.3702631 1.57196111 12.1499185
#> 3 10.4592952 3.51396246 31.1320502
$pmultiparm
poolm#> p-values D1 F-statistic
#> factor(Carrying) 6.656759e-05 10.34468
Back to Examples
We follow the same procedure as the second example but also apply model selection here.
library(mice)
library(miceafter)
<- mice(lbp_orig, m=5, maxit=5, printFlag = FALSE)
imp
<- mids2milist(imp)
dat_imp
<- with(dat_imp, expr = glm(Pain ~ factor(Carrying) + Gender + Smoking +
ra + JobControl + JobDemands + SocialSupport))
Function
<- pool_glm(ra, method="D1", p.crit = 0.15, direction = "BW")
poolm #> Removed at Step 1 is - SocialSupport
#> Removed at Step 2 is - Smoking
#> Removed at Step 3 is - JobDemands
#> Removed at Step 4 is - Function
#> Removed at Step 5 is - Gender
#>
#> Selection correctly terminated,
#> No more variables removed from the model
$pmodel
poolm#> term estimate std.error statistic df p.value
#> 1 (Intercept) 6.01797705 1.03680867 5.804327 94.92544 8.517292e-08
#> 2 JobControl -0.03139866 0.01698247 -1.848887 120.12525 6.693288e-02
#> 3 factor(Carrying)2 0.75033713 0.41757890 1.796875 53.99690 7.794927e-02
#> 4 factor(Carrying)3 2.00235646 0.40304875 4.968026 74.18297 4.210313e-06
#> 2.5 % 97.5 %
#> 1 3.95963075 8.076323364
#> 2 -0.06502241 0.002225087
#> 3 -0.08685926 1.587533529
#> 4 1.19929722 2.805415710
$pmultiparm
poolm#> p-values D1 F-statistic
#> JobControl 6.485343e-02 3.418382
#> factor(Carrying) 2.386445e-05 12.211908
Back to Examples
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.