| Type: | Package |
| Title: | Microbial Community Ecology Data Analysis |
| Version: | 1.15.0 |
| Author: | Chi Liu [aut, cre], Felipe R. P. Mansoldo [ctb], Minjie Yao [ctb], Xiangzhen Li [ctb] |
| Maintainer: | Chi Liu <liuchi0426@126.com> |
| Description: | A series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis. |
| URL: | https://github.com/ChiLiubio/microeco |
| Depends: | R (≥ 3.5.0) |
| Imports: | R6, stats, ape, vegan, rlang, data.table, magrittr, dplyr, tibble, scales, grid, ggplot2 (≥ 3.5.0), RColorBrewer, reshape2, igraph (≥ 2.0.0), lifecycle |
| Suggests: | GUniFrac, MASS, ggpubr, randomForest, ggdendro, ggrepel, agricolae, gridExtra, picante, pheatmap, rgexf, mice, GGally |
| License: | GPL-3 |
| LazyData: | true |
| Encoding: | UTF-8 |
| NeedsCompilation: | no |
| Packaged: | 2025-05-18 05:19:14 UTC; Chi |
| Repository: | CRAN |
| Date/Publication: | 2025-05-18 11:10:02 UTC |
| RoxygenNote: | 7.3.2 |
The KEGG data files used in the trans_func class
Description
The KEGG data files used in the trans_func class
Usage
data(Tax4Fun2_KEGG)
Copy an R6 class object
Description
Copy an R6 class object
Usage
clone(x, deep = TRUE)
Arguments
x |
R6 class object |
deep |
default TRUE; TRUE means deep copy, i.e. copied object is unlinked with the original one. |
Value
identical but unlinked R6 object
Examples
data("dataset")
clone(dataset)
The dataset structured with microtable class for the demonstration of examples
Description
The dataset arose from 16S rRNA gene amplicon sequencing of wetland soils in China <doi:10.1016/j.geoderma.2018.09.035>.
In dataset$sample_table, the 'Group' column means Chinese inland wetlands (IW), coastal wetland (CW) and Tibet plateau wetlands (TW).
The column 'Type' denotes the sampling region: northeastern region (NE), northwest region (NW), North China area (NC),
middle-lower reaches of the Yangtze River (YML), southern coastal area (SC), upper reaches of the Yangtze River (YU) and Qinghai-Tibet Plateau (QTP).
The column 'Saline' represents the saline soils and non-saline soils.
Usage
data(dataset)
Format
An R6 class object
Details
sample_table: sample information table
otu_table: species-community abundance table
tax_table: taxonomic table
phylo_tree: phylogenetic tree
taxa_abund: taxa abundance list with several tables for Phylum...Genus
alpha_diversity: alpha diversity table
beta_diversity: list with several beta diversity distance matrix
Remove all factors in a data frame
Description
Remove all factors in a data frame
Usage
dropallfactors(x, unfac2num = FALSE, char2num = FALSE)
Arguments
x |
data.frame object |
unfac2num |
default FALSE; whether try to convert all character columns to numeric directly; If TRUE, it will attempt to convert each column, including those of character and factor types. First, it tries to convert them to the character type, and then checks if they can be converted to numeric. If the conversion to numeric is possible, it outputs the numeric type; otherwise, it outputs the character type. If FALSE, only columns with the factor attribute will be attempted for conversion. Factors will first be converted to character type, and then an attempt will be made to convert them to numeric. If successful, the numeric type will be output; otherwise, the character type will be output. This process can effectively remove the factor attribute. Note that this can only transform the columns that may be transformed to numeric without using factor. |
char2num |
default FALSE; whether force all the character to be numeric class by using factor as an intermediate. Therefore, this parameter can enforce the conversion of all character and factor types to numeric. This operation is very useful in some cases that numerical data is required as input. |
Value
data frame without factor
Examples
data("taxonomy_table_16S")
taxonomy_table_16S[, 1] <- as.factor(taxonomy_table_16S[, 1])
str(dropallfactors(taxonomy_table_16S))
The environmental factors for the 16S example data
Description
The environmental factors for the 16S example data
Usage
data(env_data_16S)
The FUNGuild database for fungi trait prediction
Description
The FUNGuild database for fungi trait prediction
Usage
data(fungi_func_FUNGuild)
The FungalTraits database for fungi trait prediction
Description
The FungalTraits database for fungi trait prediction
Usage
data(fungi_func_FungalTraits)
Introduction to microeco package (https://github.com/ChiLiubio/microeco)
Description
For the detailed tutorial on microeco package, please follow the links:
Online tutorial website: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases
For each R6 class, please open the help document by searching the class name.
For example, to search microtable class, please run the command help(microtable) or ?microtable.
Another way to open the help document of R6 class is to click the following links collected:
microtable
trans_abund
trans_venn
trans_alpha
trans_beta
trans_diff
trans_network
trans_nullmodel
trans_classifier
trans_env
trans_func
trans_norm
To report bugs or discuss questions, please use Github Issues (https://github.com/ChiLiubio/microeco/issues). Before creating a new issue, please read the guideline (https://chiliubio.github.io/microeco_tutorial/notes.html#github-issues).
To cite microeco package in publications, please run the following command to get the reference: citation("microeco")
Reference:
Chi Liu, Yaoming Cui, Xiangzhen Li and Minjie Yao. 2021. microeco: an R package for data mining in microbial community ecology.
FEMS Microbiology Ecology, 97(2): fiaa255. DOI:10.1093/femsec/fiaa255
Create microtable object to store and manage all the basic files.
Description
This class is a wrapper for a series of operations on the basic data manipulations,
including microtable object creation, data trimming, data filtering, rarefaction based on Paul et al. (2013) <doi:10.1371/journal.pone.0061217>, taxonomic abundance calculation,
alpha and beta diversity calculation based on the An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and
Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228-8235.2005> and other basic operations.
Online tutorial: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases
Format
microtable.
Methods
Public methods
Method new()
Usage
microtable$new( otu_table, sample_table = NULL, tax_table = NULL, phylo_tree = NULL, rep_fasta = NULL, auto_tidy = FALSE )
Arguments
otu_tabledata.frame class; The feature abundance table; rownames are features (e.g. OTUs/ASVs/species/genes); column names are samples.
sample_tabledefault NULL; data.frame; The sample information table; rownames are samples; columns are sample metadata; If not provided, the function can generate a table automatically according to the sample names in otu_table.
tax_tabledefault NULL; data.frame class; The taxonomic information table; rownames are features; column names are taxonomic classes.
phylo_treedefault NULL; phylo class; The phylogenetic tree that must be read with the
read.treefunction of ape package.rep_fastadefault NULL;
DNAStringSet,listorDNAbinclass; The representative sequences of OTUs/ASVs. The sequences should be read with thereadDNAStringSetfunction inBiostringspackage (DNAStringSet class),read.fastafunction inseqinrpackage (list class), orread.FASTAfunction inapepackage (DNAbin class).auto_tidydefault FALSE; Whether tidy the data in the
microtableobject automatically. If TRUE, the function can invoke thetidy_datasetfunction.
Returns
an object of microtable class with the following components:
sample_tableThe sample information table.
otu_tableThe feature table.
tax_tableThe taxonomic table.
phylo_treeThe phylogenetic tree.
rep_fastaThe sequences.
taxa_abunddefault NULL; use
cal_abundfunction to calculate.alpha_diversitydefault NULL; use
cal_alphadivfunction to calculate.beta_diversitydefault NULL; use
cal_betadivfunction to calculate.
Examples
data(otu_table_16S) data(taxonomy_table_16S) data(sample_info_16S) data(phylo_tree_16S) m1 <- microtable$new(otu_table = otu_table_16S) m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S, tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S) # trim the files in the dataset m1$tidy_dataset()
Method filter_pollution()
Filter the features considered pollution in microtable$tax_table.
This operation will remove any line of the microtable$tax_table containing any the word in taxa parameter regardless of word case.
Usage
microtable$filter_pollution(taxa = c("mitochondria", "chloroplast"))Arguments
taxadefault
c("mitochondria", "chloroplast"); filter mitochondria and chloroplast, or others as needed.
Returns
updated microtable object
Examples
m1$filter_pollution(taxa = c("mitochondria", "chloroplast"))
Method filter_taxa()
Filter the features with low abundance and/or low occurrence frequency for otu_table or taxa_abund list.
Usage
microtable$filter_taxa( rel_abund = 0, freq = 1, include_lowest = TRUE, for_taxa_abund = FALSE )
Arguments
rel_abunddefault 0; the relative abundance threshold, such as 0.0001.
freqdefault 1; the occurrence frequency threshold. For example, the number 2 represents filtering the feature that occurs less than 2 times. A number smaller than 1 is also allowable. For instance, the number 0.1 represents filtering the feature that occurs in less than 10% samples.
include_lowestdefault TRUE; whether include the feature with the threshold.
for_taxa_abunddefault FALSE; whether apply this function to
taxa_abundlist. FALSE means using this function forotu_table
Returns
updated microtable object
Examples
\donttest{
d1 <- clone(m1)
d1$filter_taxa(rel_abund = 0.0001, freq = 0.2)
}
Method rarefy_samples()
Rarefy communities to make all samples have same count number.
Usage
microtable$rarefy_samples(
method = c("rarefy", "SRS")[1],
sample.size = NULL,
...
)Arguments
methoddefault c("rarefy", "SRS")[1]; "rarefy" represents the classical resampling like
rrarefyfunction ofveganpackage. "SRS" is scaling with ranked subsampling method based on the SRS package provided by Lukas Beule and Petr Karlovsky (2020) <DOI:10.7717/peerj.9593>.sample.sizedefault NULL; libray size. If not provided, use the minimum number across all samples. For "SRS" method, this parameter is passed to
Cminparameter ofSRSfunction of SRS package....parameters pass to
normfunction oftrans_normclass.
Returns
rarefied microtable object.
Examples
\donttest{
m1$rarefy_samples(sample.size = min(m1$sample_sums()))
}
Method tidy_dataset()
Trim all the data in the microtable object to make taxa and samples consistent. The results are intersections across data.
Usage
microtable$tidy_dataset(main_data = FALSE)
Arguments
main_datadefault FALSE; if TRUE, only basic data in
microtableobject is trimmed. Otherwise, all data, includingtaxa_abund,alpha_diversityandbeta_diversity, are all trimed.
Returns
None. The data in the object are tidied up.
If tax_table is in object, its row names are completely same with the row names of otu_table.
Examples
m1$tidy_dataset(main_data = TRUE)
Method add_rownames2taxonomy()
Add the row names of microtable$tax_table as its last column.
This is especially useful when the row names of microtable$tax_table are required as a taxonomic level
for the taxonomic abundance calculation and biomarker identification.
Usage
microtable$add_rownames2taxonomy(use_name = "OTU")
Arguments
use_namedefault "OTU"; The name of the column added in the
tax_table.
Returns
tax_table updated in the object.
Examples
\donttest{
m1$add_rownames2taxonomy()
}
Method sample_sums()
Sum the abundance for each sample.
Usage
microtable$sample_sums()
Returns
abundance in each sample.
Examples
\donttest{
m1$sample_sums()
}
Method taxa_sums()
Sum the abundance for each taxon.
Usage
microtable$taxa_sums()
Returns
abundance in each taxon.
Examples
\donttest{
m1$taxa_sums()
}
Method sample_names()
Show the sample names.
Usage
microtable$sample_names()
Returns
sample names.
Examples
\donttest{
m1$sample_names()
}
Method taxa_names()
Show the taxa names.
Usage
microtable$taxa_names()
Returns
taxa names.
Examples
\donttest{
m1$taxa_names()
}
Method rename_taxa()
Rename the features, including the row names of otu_table, row names of tax_table, tip labels of phylo_tree and names in rep_fasta.
Usage
microtable$rename_taxa(newname_prefix = "ASV_")
Arguments
newname_prefixdefault "ASV_"; the prefix of new names; new names will be newname_prefix + numbers according to the order of row names in
otu_table.
Returns
renamed object
Examples
\donttest{
m1$rename_taxa()
}
Method merge_samples()
Merge samples according to specific groups to generate a new microtable object.
Usage
microtable$merge_samples(group)
Arguments
groupa column name in
sample_tableofmicrotableobject.
Returns
a merged microtable object.
Examples
\donttest{
m1$merge_samples("Group")
}
Method merge_taxa()
Merge taxa according to a specific taxonomic rank to generate a new microtable object.
Usage
microtable$merge_taxa(taxa = "Genus")
Arguments
taxadefault "Genus"; the specific rank in
tax_table.
Returns
a merged microtable object.
Examples
\donttest{
m1$merge_taxa(taxa = "Genus")
}
Method save_table()
Save each basic data in microtable object as local file.
Usage
microtable$save_table(dirpath = "basic_files", sep = ",", ...)
Arguments
dirpathdefault "basic_files"; directory to save the tables, phylogenetic tree and sequences in microtable object. It will be created if not found.
sepdefault ","; the field separator string, used to save tables. Same with
sepparameter inwrite.tablefunction. default','correspond to the file name suffix 'csv'. The option'\t'correspond to the file name suffix 'tsv'. For other options, suffix are all 'txt'....parameters passed to
write.table.
Examples
\dontrun{
m1$save_table()
}
Method cal_abund()
Calculate the taxonomic abundance at each taxonomic level or selected levels.
Usage
microtable$cal_abund( select_cols = NULL, rel = TRUE, merge_by = "|", split_group = FALSE, split_by = "&", split_column = NULL, split_special_char = "&&" )
Arguments
select_colsdefault NULL; numeric vector (column sequences) or character vector (column names of
microtable$tax_table); applied to select columns to calculate abundances according to ordered hierarchical levels. This parameter is very useful when only part of the columns are needed to calculate abundances.reldefault TRUE; if TRUE, relative abundance is used; if FALSE, absolute abundance (i.e. raw values) will be summed.
merge_bydefault "|"; the symbol to merge and concatenate taxonomic names of different levels.
split_groupdefault FALSE; if TRUE, split the rows to multiple rows according to one or more columns in
tax_tablewhen there is multiple mapping information.split_bydefault "&"; Separator delimiting collapsed values; only available when
split_group = TRUE.split_columndefault NULL; one column name used for the splitting in tax_table for each abundance calculation; only available when
split_group = TRUE. If not provided, the function will split each column that containing thesplit_bycharacter.split_special_chardefault "&&"; special character that will be used forcibly to split multiple mapping information in
tax_tableby default no mattersplit_groupsetting.
Returns
taxa_abund list in object.
Examples
\donttest{
m1$cal_abund()
}
Method save_abund()
Save taxonomic abundance as local file.
Usage
microtable$save_abund( dirpath = "taxa_abund", merge_all = FALSE, rm_un = FALSE, rm_pattern = "__$", sep = ",", ... )
Arguments
dirpathdefault "taxa_abund"; directory to save the taxonomic abundance files. It will be created if not found.
merge_alldefault FALSE; Whether merge all tables into one. The merged file format is generally called 'mpa' style.
rm_undefault FALSE; Whether remove unclassified taxa in which the name ends with '__' generally.
rm_patterndefault "__$"; The pattern searched through the merged taxonomic names. See also
patternparameter ingreplfunction. Only available whenrm_un = TRUE. The default "__$" means removing the names end with '__'.sepdefault ","; the field separator string. Same with
sepparameter inwrite.tablefunction. default','correspond to the file name suffix 'csv'. The option'\t'correspond to the file name suffix 'tsv'. For other options, suffix are all 'txt'....parameters passed to
write.table.
Examples
\dontrun{
m1$save_abund(dirpath = "taxa_abund")
m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t")
}
Method cal_alphadiv()
Calculate alpha diversity.
Usage
microtable$cal_alphadiv(measures = NULL, PD = FALSE)
Arguments
measuresdefault NULL; one or more indexes in
c("Observed", "Coverage", "Chao1", "ACE", "Shannon", "Simpson", "InvSimpson", "Fisher", "Pielou"); The default NULL represents that all the measures are calculated. 'Shannon', 'Simpson' and 'InvSimpson' are calculated based onvegan::diversityfunction; 'Chao1' and 'ACE' depend on the functionvegan::estimateR. 'Fisher' index relies on the functionvegan::fisher.alpha. "Observed" means the observed species number in a community, i.e. richness. "Coverage" represents good's coverage. It is defined:Coverage = 1 - \frac{f1}{n}where n is the total abundance of a sample, and f1 is the number of singleton (species with abundance 1) in the sample. "Pielou" denotes the Pielou evenness index. It is defined:
J = \frac{H'}{\ln(S)}where H' is Shannon index, and S is the species number.
PDdefault FALSE; whether Faith's phylogenetic diversity is calculated. The calculation depends on the function
picante::pd. Note that the phylogenetic tree (phylo_treeobject in the data) is required for PD.
Returns
alpha_diversity stored in the object. The se.chao1 and se.ACE are the standard erros of Chao1 and ACE, respectively.
Examples
\donttest{
m1$cal_alphadiv(measures = NULL, PD = FALSE)
class(m1$alpha_diversity)
}
Method save_alphadiv()
Save alpha diversity table to the computer.
Usage
microtable$save_alphadiv(dirpath = "alpha_diversity")
Arguments
dirpathdefault "alpha_diversity"; directory name to save the alpha_diversity.csv file.
Method cal_betadiv()
Calculate beta diversity dissimilarity matrix, such as Bray-Curtis, Jaccard, and UniFrac. See An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228–8235.2005>.
Usage
microtable$cal_betadiv( method = NULL, unifrac = FALSE, binary = FALSE, force_jaccard_binary = TRUE, ... )
Arguments
methoddefault NULL; a character vector with one or more elements;
c("bray", "jaccard")is used whenmethod = NULL; See themethodparameter invegdistfunction for more available options, such as 'aitchison' and 'robust.aitchison'.unifracdefault FALSE; whether UniFrac indexes (weighted and unweighted) are calculated. Phylogenetic tree is necessary when
unifrac = TRUE.binarydefault FALSE; Whether convert abundance to binary data (presence/absence).
force_jaccard_binarydefault TRUE; Whether forcibly convert abundance to binary data (presence/absence) when
method = "jaccard". The reason for this setting is that the Jaccard metric is commonly used for binary data. Ifforce_jaccard_binary = FALSEis set, the conversion will not be enforced, but will instead be based on the setting of thebinaryparameter....parameters passed to
vegdistfunction of vegan package.
Returns
beta_diversity list stored in the object.
Examples
\donttest{
m1$cal_betadiv(unifrac = FALSE)
class(m1$beta_diversity)
}
Method save_betadiv()
Save beta diversity matrix to the computer.
Usage
microtable$save_betadiv(dirpath = "beta_diversity")
Arguments
dirpathdefault "beta_diversity"; directory name to save the beta diversity matrix files.
Method print()
Print the microtable object.
Usage
microtable$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
microtable$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `microtable$new`
## ------------------------------------------------
data(otu_table_16S)
data(taxonomy_table_16S)
data(sample_info_16S)
data(phylo_tree_16S)
m1 <- microtable$new(otu_table = otu_table_16S)
m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S,
tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S)
# trim the files in the dataset
m1$tidy_dataset()
## ------------------------------------------------
## Method `microtable$filter_pollution`
## ------------------------------------------------
m1$filter_pollution(taxa = c("mitochondria", "chloroplast"))
## ------------------------------------------------
## Method `microtable$filter_taxa`
## ------------------------------------------------
d1 <- clone(m1)
d1$filter_taxa(rel_abund = 0.0001, freq = 0.2)
## ------------------------------------------------
## Method `microtable$rarefy_samples`
## ------------------------------------------------
m1$rarefy_samples(sample.size = min(m1$sample_sums()))
## ------------------------------------------------
## Method `microtable$tidy_dataset`
## ------------------------------------------------
m1$tidy_dataset(main_data = TRUE)
## ------------------------------------------------
## Method `microtable$add_rownames2taxonomy`
## ------------------------------------------------
m1$add_rownames2taxonomy()
## ------------------------------------------------
## Method `microtable$sample_sums`
## ------------------------------------------------
m1$sample_sums()
## ------------------------------------------------
## Method `microtable$taxa_sums`
## ------------------------------------------------
m1$taxa_sums()
## ------------------------------------------------
## Method `microtable$sample_names`
## ------------------------------------------------
m1$sample_names()
## ------------------------------------------------
## Method `microtable$taxa_names`
## ------------------------------------------------
m1$taxa_names()
## ------------------------------------------------
## Method `microtable$rename_taxa`
## ------------------------------------------------
m1$rename_taxa()
## ------------------------------------------------
## Method `microtable$merge_samples`
## ------------------------------------------------
m1$merge_samples("Group")
## ------------------------------------------------
## Method `microtable$merge_taxa`
## ------------------------------------------------
m1$merge_taxa(taxa = "Genus")
## ------------------------------------------------
## Method `microtable$save_table`
## ------------------------------------------------
## Not run:
m1$save_table()
## End(Not run)
## ------------------------------------------------
## Method `microtable$cal_abund`
## ------------------------------------------------
m1$cal_abund()
## ------------------------------------------------
## Method `microtable$save_abund`
## ------------------------------------------------
## Not run:
m1$save_abund(dirpath = "taxa_abund")
m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t")
## End(Not run)
## ------------------------------------------------
## Method `microtable$cal_alphadiv`
## ------------------------------------------------
m1$cal_alphadiv(measures = NULL, PD = FALSE)
class(m1$alpha_diversity)
## ------------------------------------------------
## Method `microtable$cal_betadiv`
## ------------------------------------------------
m1$cal_betadiv(unifrac = FALSE)
class(m1$beta_diversity)
The OTU table of the 16S example data
Description
The OTU table of the 16S example data
Usage
data(otu_table_16S)
The OTU table of the ITS example data
Description
The OTU table of the ITS example data
Usage
data(otu_table_ITS)
The phylogenetic tree of 16S example data
Description
The phylogenetic tree of 16S example data
Usage
data(phylo_tree_16S)
The modified FAPROTAX trait database
Description
The modified FAPROTAX trait database
Usage
data(prok_func_FAPROTAX)
The modified NJC19 database
Description
The modified NJC19 database
Usage
data(prok_func_NJC19_list)
The sample information of 16S example data
Description
The sample information of 16S example data
Usage
data(sample_info_16S)
The sample information of ITS example data
Description
The sample information of ITS example data
Usage
data(sample_info_ITS)
The taxonomic information of 16S example data
Description
The taxonomic information of 16S example data
Usage
data(taxonomy_table_16S)
The taxonomic information of ITS example data
Description
The taxonomic information of ITS example data
Usage
data(taxonomy_table_ITS)
Clean up the taxonomic table to make taxonomic assignments consistent.
Description
Clean up the taxonomic table to make taxonomic assignments consistent.
Usage
tidy_taxonomy(
taxonomy_table,
column = "all",
pattern = c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*",
".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*"),
replacement = "",
ignore.case = TRUE,
na_fill = ""
)
Arguments
taxonomy_table |
a data.frame with taxonomic information (rows are features; columns are taxonomic levels);
or a microtable object with |
column |
default "all"; "all" or a number; 'all' represents cleaning up all the columns; a number represents cleaning up this specific column. |
pattern |
default c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*", ".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*");
the characters (regular expressions) to be removed or replaced; removed when parameter |
replacement |
default ""; the characters used to replace the character in |
ignore.case |
default TRUE; if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching. |
na_fill |
default ""; used to replace |
Format
data.frame object.
Value
data.frame
Examples
data("taxonomy_table_16S")
tidy_taxonomy(taxonomy_table_16S)
Create trans_abund object for taxonomic abundance visualization.
Description
This class is a wrapper for the taxonomic abundance transformations and visualization (e.g., bar plot, boxplot, heatmap, pie chart and line chart).
The converted data style is the long-format for ggplot2 plot.
Methods
Public methods
Method new()
Usage
trans_abund$new( dataset = NULL, taxrank = "Phylum", show = 0, ntaxa = 10, groupmean = NULL, group_morestats = FALSE, delete_taxonomy_lineage = TRUE, delete_taxonomy_prefix = TRUE, prefix = NULL, use_percentage = TRUE, input_taxaname = NULL, high_level = NULL, high_level_fix_nsub = NULL )
Arguments
datasetdefault NULL; the object of
microtableclass.taxrankdefault "Phylum"; taxonomic level, i.e. a column name in
tax_tableof the input object. The function extracts the abundance from thetaxa_abundlist according to the names in the list. If thetaxa_abundlist is NULL, the function can automatically calculate the relative abundance to generatetaxa_abundlist.showdefault 0; the mean relative abundance threshold for filtering the taxa with low abundance.
ntaxadefault 10; how many taxa are selected to use. Taxa are ordered by abundance from high to low. This parameter does not conflict with the parameter
show. Both can be used.ntaxa = NULLmeans the parameter will be invalid.groupmeandefault NULL; calculate mean abundance for each group. Select a column name in
microtable$sample_table.group_morestatsdefault FALSE; only available when
groupmeanparameter is provided; Whether output more statistics for each group, including min, max, median and quantile; Thereinto, quantile25 and quantile75 denote 25% and 75% quantiles, respectively.delete_taxonomy_lineagedefault TRUE; whether delete the taxonomy lineage in front of the target level.
delete_taxonomy_prefixdefault TRUE; whether delete the prefix of taxonomy, such as "g__".
prefixdefault NULL; character string; available when
delete_taxonomy_prefix = T; default NULL represents using the "letter+__", e.g. "k__" for Phylum level; Please provide the customized prefix when it is not standard, otherwise the program can not correctly recognize it.use_percentagedefault TRUE; whether show the abundance percentage. If TRUE, the abundance data will be multiplied by 100.
input_taxanamedefault NULL; character vector; input taxa names to select some taxa.
high_leveldefault NULL; a taxonomic rank, such as "Phylum", used to add the taxonomic information of higher level. It is required for the legend with nested taxonomic levels in the bar plot or the higher taxonomic level in facets of y axis in the heatmap.
high_level_fix_nsubdefault NULL; an integer, used to fix the number of selected abundant taxa in each taxon from higher taxonomic level. If the total number under one taxon of higher level is less than the high_level_fix_nsub, the total number will be used. When
high_level_fix_nsubis provided, the taxa number of higher level is calculated as:ceiling(ntaxa/high_level_fix_nsub). Note thatntaxameans either the parameterntaxaor the taxonomic number obtained by filtering according to theshowparameter.
Returns
data_abund stored in the object. The column 'all_mean_abund' represents mean relative abundance across all the samples.
So the values in one taxon are all same across all the samples.
If the sum of column 'Abundance' in one sample is larger than 1, the 'Abundance', 'SD' and 'SE' has been multiplied by 100.
Examples
\donttest{
data(dataset)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10)
}
Method plot_bar()
Bar plot.
Usage
trans_abund$plot_bar( color_values = RColorBrewer::brewer.pal(8, "Dark2"), bar_full = TRUE, others_color = "grey90", facet = NULL, order_x = NULL, x_axis_name = NULL, barwidth = NULL, use_alluvium = FALSE, clustering = FALSE, clustering_plot = FALSE, cluster_plot_width = 0.2, facet_color = "grey95", strip_text = 11, legend_text_italic = FALSE, xtext_angle = 0, xtext_size = 10, xtext_keep = TRUE, xtitle_keep = TRUE, ytitle_size = 17, coord_flip = FALSE, ggnested = FALSE, high_level_add_other = FALSE, bar_type = deprecated() )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the bars.bar_fulldefault TRUE; Whether the bar shows all the features (including 'Others'). Default
TRUEmeans total abundance are summed to 1 or 100 (percentage).FALSEmeans 'Others' will not be shown.others_colordefault "grey90"; the color for "Others" taxa.
facetdefault NULL; a character vector for the facet; group column name of
sample_table, such as,"Group"; If multiple facets are needed, please provide ordered names, such asc("Group", "Type"). The latter should have a finer scale than the former one; Please adjust the facet orders in the plot by assigning factors insample_tablebefore creatingtrans_abundobject or assigning factors in thedata_abundtable oftrans_abundobject. When multiple facets are used, please first install packageggh4xusing the commandinstall.packages("ggh4x").order_xdefault NULL; vector; used to order the sample names in x axis; must be the samples vector, such as
c("S1", "S3", "S2").x_axis_nameNULL; a character string; a column name of sample_table in dataset; used to show the sample names in x axis.
barwidthdefault NULL; bar width, see
widthingeom_bar.use_alluviumdefault FALSE; whether add alluvium plot. If
TRUE, please first installggalluvialpackage.clusteringdefault FALSE; whether order samples by the clustering.
clustering_plotdefault FALSE; whether add clustering plot. If
clustering_plot = TRUE,clusteringwill be also TRUE in any case for the clustering.cluster_plot_widthdefault 0.2, the dendrogram plot width; available when
clustering_plot = TRUE.facet_colordefault "grey95"; facet background color.
strip_textdefault 11; facet text size.
legend_text_italicdefault FALSE; whether use italic in legend.
xtext_angledefault 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
xtext_sizedefault 10; x axis text size.
xtext_keepdefault TRUE; whether retain x text.
xtitle_keepdefault TRUE; whether retain x title.
ytitle_sizedefault 17; y axis title size.
coord_flipdefault FALSE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.
ggnesteddefault FALSE; whether use nested legend. Need
ggnestedpackage to be installed (https://github.com/gmteunisse/ggnested). To make it available, please assignhigh_levelparameter when creating the object.high_level_add_otherdefault FALSE; whether add 'Others' (all the unknown taxa) in each taxon of higher taxonomic level. Only available when
ggnested = TRUE.bar_typedeprecated. Please use
bar_fullargument instead.
Returns
ggplot2 object.
Examples
\donttest{
t1$plot_bar(facet = "Group", xtext_keep = FALSE)
}
Method plot_heatmap()
Plot the heatmap.
Usage
trans_abund$plot_heatmap( color_values = rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")), facet = NULL, facet_switch = "y", x_axis_name = NULL, order_x = NULL, withmargin = TRUE, plot_numbers = FALSE, plot_text_size = 4, plot_breaks = NULL, margincolor = "white", plot_colorscale = "log10", min_abundance = 0.01, max_abundance = NULL, strip_text = 11, xtext_keep = TRUE, xtext_angle = 0, xtext_size = 10, ytext_size = 11, xtitle_keep = TRUE, grid_clean = TRUE, legend_title = "% Relative\nAbundance", pheatmap = FALSE, ... )
Arguments
color_valuesdefault rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")); colors palette for the plotting.
facetdefault NULL; a character vector for the facet; a group column name of
sample_table, such as,"Group"; If multiple facets are needed, please provide ordered names, such asc("Group", "Type"). The latter should have a finer scale than the former one; Please adjust the facet orders in the plot by assigning factors insample_tablebefore creatingtrans_abundobject or assigning factors in thedata_abundtable oftrans_abundobject. When multiple facets are used, please first install packageggh4xusing the commandinstall.packages("ggh4x").facet_switchdefault "y"; By default, the labels in facets are displayed on the top and right of the plot. If "x", the top labels will be displayed to the bottom. If "y", the right-hand side labels will be displayed to the left. Can also be set to "both". When the
high_levelis found in the object, the function will generate facets for the higher taxonomy in y axis. So the default "y" of the parameter is to make the visualization better whenhigh_levelis found. This parameter will be passed to theswitchparameter inggplot2::facet_gridorggh4x::facet_nestedfunction.x_axis_nameNULL; a character string; a column name of sample_table used to show the sample names in x axis.
order_xdefault NULL; vector; used to order the sample names in x axis; must be the samples vector, such as, c("S1", "S3", "S2").
withmargindefault TRUE; whether retain the tile margin.
plot_numbersdefault FALSE; whether plot the number in heatmap.
plot_text_sizedefault 4; If plot_numbers TRUE, text size in plot.
plot_breaksdefault NULL; The legend breaks.
margincolordefault "white"; If withmargin TRUE, use this as the margin color.
plot_colorscaledefault "log10"; color scale.
min_abundancedefault .01; the minimum abundance percentage in plot.
max_abundancedefault NULL; the maximum abundance percentage in plot, NULL reprensent the max percentage.
strip_textdefault 11; facet text size.
xtext_keepdefault TRUE; whether retain x text.
xtext_angledefault 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
xtext_sizedefault 10; x axis text size.
ytext_sizedefault 11; y axis text size.
xtitle_keepdefault TRUE; whether retain x title.
grid_cleandefault TRUE; whether remove grid lines.
legend_titledefault "% Relative\nAbundance"; legend title text.
pheatmapdefault FALSE; whether use pheatmap package to plot the heatmap.
...paremeters pass to pheatmap when pheatmap = TRUE.
Returns
ggplot2 object or grid object based on pheatmap.
Examples
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40)
t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE)
}
Method plot_box()
Box plot.
Usage
trans_abund$plot_box( color_values = RColorBrewer::brewer.pal(8, "Dark2"), group = NULL, show_point = FALSE, point_color = "black", point_size = 3, point_alpha = 0.3, plot_flip = FALSE, boxfill = TRUE, middlecolor = "grey95", middlesize = 1, xtext_angle = 0, xtext_size = 10, ytitle_size = 17, ... )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the box.groupdefault NULL; a column name of sample table to show abundance across groups.
show_pointdefault FALSE; whether show points in plot.
point_colordefault "black"; If show_point TRUE; use the color
point_sizedefault 3; If show_point TRUE; use the size
point_alphadefault .3; If show_point TRUE; use the transparency.
plot_flipdefault FALSE; Whether rotate plot.
boxfilldefault TRUE; Whether fill the box with colors.
middlecolordefault "grey95"; The middle line color.
middlesizedefault 1; The middle line size.
xtext_angledefault 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
xtext_sizedefault 10; x axis text size.
ytitle_sizedefault 17; y axis title size.
...parameters pass to
geom_boxplotfunction.
Returns
ggplot2 object.
Examples
\donttest{
t1$plot_box(group = "Group")
}
Method plot_line()
Plot the line chart.
Usage
trans_abund$plot_line( color_values = RColorBrewer::brewer.pal(8, "Dark2"), plot_SE = TRUE, position = position_dodge(0.1), errorbar_size = 1, errorbar_width = 0.1, point_size = 3, point_alpha = 0.8, line_size = 0.8, line_alpha = 0.8, line_type = 1, xtext_angle = 0, xtext_size = 10, ytitle_size = 17 )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the points and lines.plot_SEdefault TRUE; TRUE: the errorbar is
mean±se; FALSE: the errorbar ismean±sd.positiondefault position_dodge(0.1); Position adjustment, either as a string (such as "identity"), or the result of a call to a position adjustment function.
errorbar_sizedefault 1; errorbar line size.
errorbar_widthdefault 0.1; errorbar width.
point_sizedefault 3; point size for taxa.
point_alphadefault 0.8; point transparency.
line_sizedefault 0.8; line size.
line_alphadefault 0.8; line transparency.
line_typedefault 1; an integer; line type.
xtext_angledefault 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
xtext_sizedefault 10; x axis text size.
ytitle_sizedefault 17; y axis title size.
Returns
ggplot2 object.
Examples
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5)
t1$plot_line(point_size = 3)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group")
t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30)
}
Method plot_pie()
Pie chart.
Usage
trans_abund$plot_pie( color_values = RColorBrewer::brewer.pal(8, "Dark2"), facet_nrow = 1, strip_text = 11, add_label = FALSE, legend_text_italic = FALSE )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for each section.facet_nrowdefault 1; how many rows in the plot.
strip_textdefault 11; sample title size.
add_labeldefault FALSE; Whether add the percentage label in each section of pie chart.
legend_text_italicdefault FALSE; whether use italic in legend.
Returns
ggplot2 object.
Examples
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_pie(facet_nrow = 1)
}
Method plot_donut()
Donut chart based on the ggpubr::ggdonutchart function.
Usage
trans_abund$plot_donut( color_values = RColorBrewer::brewer.pal(8, "Dark2"), label = TRUE, facet_nrow = 1, legend_text_italic = FALSE, ... )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the donut.labeldefault TRUE; whether show the percentage label.
facet_nrowdefault 1; how many rows in the plot.
legend_text_italicdefault FALSE; whether use italic in legend.
...parameters passed to
ggpubr::ggdonutchart.
Returns
combined ggplot2 objects list, generated by ggpubr::ggarrange function.
Examples
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_donut(label = TRUE)
}
Method plot_radar()
Radar chart based on the ggradar package (https://github.com/ricardo-bion/ggradar).
Usage
trans_abund$plot_radar( color_values = RColorBrewer::brewer.pal(8, "Dark2"), ... )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for samples....parameters passed to
ggradar::ggradarfunction except group.colours parameter.
Returns
ggplot2 object.
Examples
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_radar()
}
Method plot_tern()
Ternary diagrams based on the ggtern package.
Usage
trans_abund$plot_tern( color_values = RColorBrewer::brewer.pal(8, "Dark2"), color_legend_guide_size = 4 )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the samples.color_legend_guide_sizedefault 4; The size of legend guide for color.
Returns
ggplot2 object.
Examples
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_tern()
}
Method print()
Print the trans_abund object.
Usage
trans_abund$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_abund$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_abund$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10)
## ------------------------------------------------
## Method `trans_abund$plot_bar`
## ------------------------------------------------
t1$plot_bar(facet = "Group", xtext_keep = FALSE)
## ------------------------------------------------
## Method `trans_abund$plot_heatmap`
## ------------------------------------------------
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40)
t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE)
## ------------------------------------------------
## Method `trans_abund$plot_box`
## ------------------------------------------------
t1$plot_box(group = "Group")
## ------------------------------------------------
## Method `trans_abund$plot_line`
## ------------------------------------------------
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5)
t1$plot_line(point_size = 3)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group")
t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30)
## ------------------------------------------------
## Method `trans_abund$plot_pie`
## ------------------------------------------------
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_pie(facet_nrow = 1)
## ------------------------------------------------
## Method `trans_abund$plot_donut`
## ------------------------------------------------
## Not run:
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_donut(label = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `trans_abund$plot_radar`
## ------------------------------------------------
## Not run:
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_radar()
## End(Not run)
## ------------------------------------------------
## Method `trans_abund$plot_tern`
## ------------------------------------------------
## Not run:
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_tern()
## End(Not run)
Create trans_alpha object for alpha diversity statistics and visualization.
Description
This class is a wrapper for a series of alpha diversity analysis, including the statistics and visualization.
Methods
Public methods
Method new()
Usage
trans_alpha$new( dataset = NULL, group = NULL, by_group = NULL, by_ID = NULL, order_x = NULL )
Arguments
datasetmicrotableobject.groupdefault NULL; a column name of
sample_tablein the input microtable object used for the statistics across groups.by_groupdefault NULL; a column name of
sample_tableused to perform the differential test among groups (fromgroupparameter) for each group (fromby_groupparameter) separately.by_IDdefault NULL; a column name of
sample_tableused to perform paired T test or paired Wilcoxon test for the paired data, such as continuous sampling of individual animals or plant compartments for different plant species (ID). Soby_IDin sample_table should be the smallest unit of sample collection without any repetition in it. When theby_IDparameter is provided, the function can automatically perform paired test, and no more parameters is required.order_xdefault NULL; a column name of
sample_tableor a vector with sample names. If provided, sort samples usingfactor.
Returns
data_alpha and data_stat stored in the object.
Examples
\donttest{
data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
}
Method cal_diff()
Differential test on alpha diversity.
Usage
trans_alpha$cal_diff(
measure = NULL,
method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",
"lme", "betareg", "glmm", "glmm_beta")[1],
formula = NULL,
p_adjust_method = "fdr",
KW_dunn_letter = TRUE,
alpha = 0.05,
anova_post_test = "duncan.test",
anova_varequal_test = FALSE,
return_model = FALSE,
...
)Arguments
measuredefault NULL; character vector; If NULL, all indexes will be used; see names of
microtable$alpha_diversity, e.g.c("Observed", "Chao1", "Shannon").methoddefault "KW"; see the following available options:
- 'KW'
Kruskal-Wallis Rank Sum Test for all groups (>= 2)
- 'KW_dunn'
Dunn's Kruskal-Wallis Multiple Comparisons <10.1080/00401706.1964.10490181> based on
dunnTestfunction inFSApackage- 'wilcox'
Wilcoxon Rank Sum Test for all paired groups When
by_IDparameter is provided in creating the object of the class, paired Wilcoxon test will be performed.- 't.test'
Student's t-Test for all paired groups. When
by_IDparameter is provided in creating the object of the class, paired t-test will be performed.- 'anova'
Variance analysis. For one-way anova, the default post hoc test is Duncan's new multiple range test. Please use
anova_post_testparameter to change the post hoc method. For multi-way anova, Please useformulaparameter to specify the model and seeaovfor more details- 'scheirerRayHare'
Scheirer-Ray-Hare test (nonparametric test) for a two-way factorial experiment; see
scheirerRayHarefunction ofrcompanionpackage- 'lm'
Linear Model based on the
lmfunction- 'lme'
Linear Mixed Effect Model based on the
lmerTestpackage- 'betareg'
Beta Regression for Rates and Proportions based on the
betaregpackage- 'glmm'
Generalized linear mixed model (GLMM) based on the
glmmTMBpackage. A family function can be provided using parameter passing, such as:family = glmmTMB::lognormal(link = "log")- 'glmm_beta'
Generalized linear mixed model (GLMM) with a family function of beta distribution. This is an extension of the GLMM model in
'glmm'option. The only difference is inglmm_betathe family function is fixed with the beta distribution function, facilitating the fitting for proportional data (ranging from 0 to 1). The link function is fixed with"logit".
formuladefault NULL; applied to two-way or multi-factor analysis when method is
"anova","scheirerRayHare","lm","lme","betareg"or"glmm"; specified set for independent variables, i.e. the latter part of a general formula, such as'block + N*P*K'.p_adjust_methoddefault "fdr" (for "KW", "wilcox", "t.test" methods) or "holm" (for "KW_dunn"); P value adjustment method; For
method = 'KW', 'wilcox' or 't.test', please seemethodparameter ofp.adjustfunction for available options; Formethod = 'KW_dunn', please seedunn.test::p.adjustment.methodsfor available options.KW_dunn_letterdefault TRUE; For
method = 'KW_dunn',TRUEdenotes significances are presented by letters;FALSEmeans significances are shown by asterisk for paired comparison.alphadefault 0.05; Significant level; used for generating significance letters when method is 'anova' or 'KW_dunn'.
anova_post_testdefault "duncan.test". The post hoc test method for one-way anova. The default option represents the Duncan's new multiple range test. Other available options include "LSD.test" (LSD post hoc test) and "HSD.test" (HSD post hoc test). All those are the function names from
agricolaepackage.anova_varequal_testdefault FALSE; whether conduct Levene's Test for equality of variances. Only available for one-way anova. Significant P value means the variance among groups is not equal.
return_modeldefault FALSE; whether return the original "lm", "lmer" or "glmm" model list in the object.
...parameters passed to
kruskal.test(whenmethod = "KW") orwilcox.testfunction (whenmethod = "wilcox") ordunnTestfunction ofFSApackage (whenmethod = "KW_dunn") oragricolae::duncan.test/agricolae::LSD.test/agricolae::HSD.test(whenmethod = "anova", one-way anova) orrcompanion::scheirerRayHare(whenmethod = "scheirerRayHare") orstats::lm(whenmethod = "lm") orlmerTest::lmer(whenmethod = "lme") orbetareg::betareg(whenmethod = "betareg") orglmmTMB::glmmTMB(whenmethod = "glmm").
Returns
res_diff, stored in object with the format data.frame.
When method is "betareg", "lm", "lme" or "glmm",
"Estimate" and "Std.Error" columns represent the fitted coefficient and its standard error, respectively.
Examples
\donttest{
t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")
}
Method plot_alpha()
Plot the alpha diversity.
Box plot (and others for visualizing data in groups of single factor) is used for the visualization of alpha diversity when the group is found in the object.
When the formula is found in the res_diff table in the object,
heatmap is employed automatically to show the significances of differential test for multiple indexes,
and errorbar (coefficient and standard errors) can be used for single index.
Usage
trans_alpha$plot_alpha( plot_type = "ggboxplot", color_values = RColorBrewer::brewer.pal(8, "Dark2"), measure = "Shannon", group = NULL, add = NULL, add_sig = TRUE, add_sig_label = "Significance", add_sig_text_size = 3.88, add_sig_label_num_dec = 4, order_x_mean = FALSE, y_start = 0.1, y_increase = 0.05, xtext_angle = 30, xtext_size = 13, ytitle_size = 17, bar_width = 0.9, bar_alpha = 0.8, dodge_width = 0.9, plot_SE = TRUE, errorbar_size = 1, errorbar_width = 0.2, errorbar_addpoint = TRUE, errorbar_color_black = FALSE, point_size = 3, point_alpha = 0.8, add_line = FALSE, line_size = 0.8, line_type = 2, line_color = "grey50", line_alpha = 0.5, heatmap_cell = "P.unadj", heatmap_sig = "Significance", heatmap_x = "Factors", heatmap_y = "Measure", heatmap_lab_fill = "P value", coefplot_sig_pos = 2, ... )
Arguments
plot_typedefault "ggboxplot"; plot type; available options include "ggboxplot", "ggdotplot", "ggviolin", "ggstripchart", "ggerrorplot", "errorbar" and "barerrorbar". The options starting with "gg" are function names coming from
ggpubrpackage. All those methods withggpubrpackage use thedata_alphatable in the object. "errorbar" represents Mean±SD or Mean±SE plot based onggplot2package by invoking thedata_stattable in the object. "barerrorbar" denotes "bar plot + error bar". It is similar with "errorbar" and has a bar plot.color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); color pallete for groups.measuredefault "Shannon"; one alpha diversity index in the object.
groupdefault NULL; group name used for the plot.
adddefault NULL; add another plot element; passed to the
addparameter of the function (e.g.,ggboxplot) fromggpubrpackage whenplot_typestarts with "gg" (functions coming from ggpubr package).add_sigdefault TRUE; whether add significance label using the result of
cal_difffunction, i.e.object$res_diff; This is manily designed to add post hoc test of anova or other significances to make the label mapping easy.add_sig_labeldefault "Significance"; select a colname of
object$res_difffor the label text when 'Letter' is not in the table, such as 'P.adj' or 'Significance'.add_sig_text_sizedefault 3.88; the size of text in added label.
add_sig_label_num_decdefault 4; reserved decimal places when the parameter
add_sig_labeluse numeric column, like 'P.adj'.order_x_meandefault FALSE; whether order x axis by the means of groups from large to small.
y_startdefault 0.1; the y axis value from which to add the significance asterisk label; the default 0.1 means
max(values) + 0.1 * (max(values) - min(values)).y_increasedefault 0.05; the increasing y axia space to add the label (asterisk or letter); the default 0.05 means
0.05 * (max(values) - min(values)); this parameter is also used to label the letters of anova result with the fixed space.xtext_angledefault 30; number (e.g. 30). Angle of text in x axis.
xtext_sizedefault 13; x axis text size. NULL means the default size in ggplot2.
ytitle_sizedefault 17; y axis title size.
bar_widthdefault 0.9; the bar width when
plot_type = "barerrorbar".bar_alphadefault 0.8; the alpha of bar color when
plot_type = "barerrorbar".dodge_widthdefault 0.9; the dodge width used in
position_dodgefunction of ggplot2 package whenplot_typeis "errorbar" or "barerrorbar".plot_SEdefault TRUE; TRUE: the errorbar is
mean±se; FALSE: the errorbar ismean±sd. Available whenplot_typeis "errorbar" or "barerrorbar".errorbar_sizedefault 1; errorbar size. Available when
plot_typeis "errorbar" or "barerrorbar".errorbar_widthdefault 0.2; errorbar width. Available when
plot_typeis "errorbar" or "barerrorbar" andby_groupis NULL.errorbar_addpointdefault TRUE; whether add point for mean. Available when
plot_typeis "errorbar" or "barerrorbar" andby_groupis NULL.errorbar_color_blackdefault FALSE; whether use black for the color of errorbar when
plot_typeis "errorbar" or "barerrorbar".point_sizedefault 3; point size for taxa. Available when
plot_typeis "errorbar" or "barerrorbar".point_alphadefault 0.8; point transparency. Available when
plot_typeis "errorbar" or "barerrorbar".add_linedefault FALSE; whether add line. Available when
plot_typeis "errorbar" or "barerrorbar".line_sizedefault 0.8; line size when
add_line = TRUE. Available whenplot_typeis "errorbar" or "barerrorbar".line_typedefault 2; an integer; line type when
add_line = TRUE. The available case is same withline_size.line_colordefault "grey50"; line color when
add_line = TRUE. Available whenby_groupis NULL. Other available case is same withline_size.line_alphadefault 0.5; line transparency when
add_line = TRUE. The available case is same withline_size.heatmap_celldefault "P.unadj"; the column of
res_difftable for the cell of heatmap when formula with multiple factors is found in the method.heatmap_sigdefault "Significance"; the column of
res_difffor the significance label of heatmap.heatmap_xdefault "Factors"; the column of
res_difffor the x axis of heatmap.heatmap_ydefault "Taxa"; the column of
res_difffor the y axis of heatmap.heatmap_lab_filldefault "P value"; legend title of heatmap.
coefplot_sig_posdefault 2; Significance label position in the coefficient point and errorbar plot. The formula is
Estimate + coefplot_sig_pos * Std.Error. This plot is used when there is only one measure found in the table, and 'Estimate' and 'Std.Error' are both in the column names (such as forlmandlme methods). The x axis is 'Estimate', and y axis denotes 'Factors'. When coefplot_sig_pos is a negative value, the label is in the left of the errorbar. Errorbar size and width in the coefficient point plot can be adjusted with the parameterserrorbar_sizeanderrorbar_width. Point size and alpha can be adjusted with parameterspoint_sizeandpoint_alpha. The significance label size can be adjusted with parameteradd_sig_text_size. Furthermore, the vertical line around 0 can be adjusted with parametersline_size,line_type,line_colorandline_alpha....parameters passing to
ggpubr::ggboxplotfunction (or other functions shown byplot_typeparameter when it starts with "gg") orplot_corfunction intrans_envclass for the heatmap of multiple factors when formula is found in theres_diffof the object.
Returns
ggplot.
Examples
\donttest{
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
}
Method print()
Print the trans_alpha object.
Usage
trans_alpha$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_alpha$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_alpha$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
## ------------------------------------------------
## Method `trans_alpha$cal_diff`
## ------------------------------------------------
t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")
## ------------------------------------------------
## Method `trans_alpha$plot_alpha`
## ------------------------------------------------
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
Create trans_beta object for beta-diversity analysis
Description
This class is a wrapper for a series of beta-diversity related analysis,
including ordination analysis based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>, group distance comparision,
clustering, perMANOVA based on Anderson al. (2008) <doi:10.1111/j.1442-9993.2001.01070.pp.x>, ANOSIM and PERMDISP.
Note that the beta diversity analysis methods related with environmental variables are encapsulated within the trans_env class.
Methods
Public methods
Method new()
Usage
trans_beta$new(dataset = NULL, measure = NULL, group = NULL)
Arguments
datasetan object of
microtableclass.measuredefault NULL; a matrix name stored in
microtable$beta_diversitylist, such as "bray" or "jaccard", or a customized matrix; used for ordination, manova, group distance comparision, etc.; Please seecal_betadivfunction ofmicrotableclass for more details.groupdefault NULL; a column name of
sample_tablein the input dataset; group information will be used for manova, betadisper or distance comparision.
Returns
measure, group and dataset stored in the object.
Examples
data(dataset) t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")
Method cal_ordination()
Unconstrained ordination.
Usage
trans_beta$cal_ordination( method = "PCoA", ncomp = 2, taxa_level = NULL, NMDS_matrix = TRUE, trans = FALSE, scale_species = FALSE, scale_species_ratio = 0.8, orthoI = NA, ordination = deprecated(), ... )
Arguments
methoddefault "PCoA"; "PCoA", "NMDS", "PCA", "DCA", "PLS-DA" or "OPLS-DA". PCoA: principal coordinates analysis; NMDS: non-metric multidimensional scaling, PCA: principal component analysis; DCA: detrended correspondence analysis; PLS-DA: partial least squares discriminant analysis; OPLS-DA: orthogonal partial least squares discriminant analysis. For the methods details, please refer to the papers <doi:10.1111/j.1574-6941.2007.00375.x> (for PCoA, NMDS, PCA and DCA) and <doi:10.1186/s12859-019-3310-7> (for PLS-DA or OPLS-DA).
ncompdefault 2; dimensions in the result. For the
methodoption "PCA", "PCoA" or "DCA", the corresponding dimension information will be selected from the original model based on this parameter.. For all the dimension information, please refer tomodelin the results. For themethodoption "NMDS", this argument will be passed to thekparameter in thevegan::metaMDSfunction.taxa_leveldefault NULL; available for PCA, DCA or NMDS (
NMDS_matrix = TRUE). Default NULL means using theotu_tablein the microtable object. For other options, please provide the taxonomic rank names intax_table, such as "Phylum" or "Genus". In such cases, the data will be merged according to the provided taxonomic levels to generated a new abundance table.NMDS_matrixdefault TRUE; For the NMDS method, whether use a distance matrix as input like PCoA. If it is FALSE, the input will be the abundance table like PCA.
transdefault FALSE; whether species abundance will be square root transformed; only available when
methodis "PCA" or "DCA". For method "NMDS" andNMDS_matrix = FALSE, please set theautotransformparameter, which will be passed tovegan::metaMDSfunction directly.scale_speciesdefault FALSE; whether species loading in PCA, DCA or NMDS (
NMDS_matrix = FALSE) is scaled.scale_species_ratiodefault 0.8; the ratio to scale up the loading; multiply by the maximum distance between samples and origin. Only available when
scale_species = TURE.orthoIdefault NA; number of orthogonal components (for OPLS-DA only). Default NA means the number of orthogonal components is automatically computed. Please also see
orthoIparameter inoplsfunction of ropls package.ordinationdeprecated. Please use
methodargument instead....parameters passed to
vegan::rdafunction whenmethod = "PCA", orvegan::decoranafunction whenmethod = "DCA", orape::pcoafunction whenmethod = "PCoA", orvegan::metaMDSfunction whenmethod = "NMDS", orropls::oplsfunction whenmethod = "PLS-DA"ormethod = "OPLS-DA".
Returns
res_ordination list stored in the object.
In the list, model is the original analysis results; scores is the sample scores table; loading is the feature loading table.
Examples
t1$cal_ordination(method = "PCoA")
Method plot_ordination()
Plot the ordination result.
Usage
trans_beta$plot_ordination( plot_type = "point", choices = c(1, 2), color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14), plot_color = NULL, plot_shape = NULL, plot_group_order = NULL, add_sample_label = NULL, point_size = 3, point_alpha = 0.8, centroid_segment_alpha = 0.6, centroid_segment_size = 1, centroid_segment_linetype = 3, ellipse_chull_fill = TRUE, ellipse_chull_alpha = 0.1, ellipse_level = 0.9, ellipse_type = "t", NMDS_stress_pos = c(1, 1), NMDS_stress_text_prefix = "", loading_arrow = FALSE, loading_taxa_num = 10, loading_text_taxlevel = NULL, loading_text_color = "black", loading_arrow_color = "grey30", loading_text_size = 3, loading_text_prefix = FALSE, loading_text_italic = FALSE )
Arguments
plot_typedefault "point"; one or more elements of "point", "ellipse", "chull" and "centroid".
- 'point'
add sample points
- 'ellipse'
add confidence ellipse for points of each group
- 'chull'
add convex hull for points of each group
- 'centroid'
add centroid line for points in each group
choicesdefault c(1, 2); selected axis for the visualization; must be numeric vector. The maximum value must not exceed the parameter
ncompin thecal_ordinationfunction.color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for different groups.shape_valuesdefault c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see
ggplot2tutorial.plot_colordefault NULL; a colname of
sample_tableto assign colors to different groups in plot.plot_shapedefault NULL; a colname of
sample_tableto assign shapes to different groups in plot.plot_group_orderdefault NULL; a vector used to order the groups in the legend of plot.
add_sample_labeldefault NULL; a column name in
sample_table; If provided, show the point name in plot.point_sizedefault 3; point size when "point" is in
plot_typeparameter.point_sizecan also be a variable name insample_table, such as "pH".point_alphadefault .8; point transparency in plot when "point" is in
plot_typeparameter.centroid_segment_alphadefault 0.6; segment transparency in plot when "centroid" is in
plot_typeparameter.centroid_segment_sizedefault 1; segment size in plot when "centroid" is in
plot_typeparameter.centroid_segment_linetypedefault 3; the line type related with centroid in plot when "centroid" is in
plot_typeparameter.ellipse_chull_filldefault TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alphadefault 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in
plot_typeparameter.ellipse_leveldefault .9; confidence level of ellipse when "ellipse" is in
plot_typeparameter.ellipse_typedefault "t"; ellipse type when "ellipse" is in
plot_typeparameter; see type instat_ellipse.NMDS_stress_posdefault c(1, 1); a numerical vector with two values used to represent the insertion position of the stress text. The first one denotes the x-axis, while the second one corresponds to the y-axis. The assigned position is determined by multiplying the respective value with the maximum point on the corresponding coordinate axis. Thus, the x-axis position is equal to
max(points of x axis) * NMDS_stress_pos[1], and the y-axis position is equal tomax(points of y axis) * NMDS_stress_pos[2]. Negative values can also be utilized for the negative part of the axis.NMDS_stress_pos = NULLdenotes no stress text to show.NMDS_stress_text_prefixdefault ""; If NMDS_stress_pos is not NULL, this parameter can be used to add text in front of the stress value.
loading_arrowdefault FALSE; whether show the loading using arrow.
loading_taxa_numdefault 10; the number of taxa used for the loading. Only available when
loading_arrow = TRUE.loading_text_taxleveldefault NULL; which level of taxonomic table will be used. Default NULL means using the
taxa_levelparameter in the previouscal_ordinationfunction.loading_text_colordefault "black"; the color of taxa text. Only available when
loading_arrow = TRUE.loading_arrow_colordefault "grey30"; the color of taxa arrow. Only available when
loading_arrow = TRUE.loading_text_sizedefault 3; the size of taxa text. Only available when
loading_arrow = TRUE.loading_text_prefixdefault FALSE; whether show the prefix (e.g., g__) in the taxa text. Only available when
loading_arrow = TRUE.loading_text_italicdefault FALSE; whether using italic for the taxa text. Only available when
loading_arrow = TRUE.
Returns
ggplot.
Examples
t1$plot_ordination(plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)
Method cal_manova()
Calculate perMANOVA (Permutational Multivariate Analysis of Variance) based on the adonis2 function of vegan package <doi:10.1111/j.1442-9993.2001.01070.pp.x>.
Usage
trans_beta$cal_manova( manova_all = TRUE, manova_set = NULL, group = NULL, by_group = NULL, p_adjust_method = "fdr", by = "terms", by_auto_set = TRUE, permutations = 999, ... )
Arguments
manova_alldefault TRUE; TRUE represents test for all the groups, i.e. the overall test; FALSE represents test for all the paired groups.
manova_setdefault NULL; other specified group set for manova, such as
"Group + Type"and"Group*Type". Please also see theformulaparameter (only right-hand side) inadonis2function of vegan package. The parameter manova_set has higher priority than manova_all parameter. If manova_set is provided; manova_all is disabled.groupdefault NULL; a column name of
sample_tableused for manova. If NULL, searchgroupvariable stored in the object. Available whenmanova_setis not provided.by_groupdefault NULL; one column name in
sample_table; used to perform paired comparisions within each group. Only available whenmanova_all = FALSEandmanova_setis not provided.p_adjust_methoddefault "fdr"; p.adjust method; available when
manova_all = FALSE; seemethodparameter ofp.adjustfunction for available options.bydefault "terms"; same with the
byparameter inadonis2function of vegan package.by_auto_setdefault TRUE; Whether automatically set the options for
byparameter ("marginal" or "terms") whenmanova_setis provided. The primary reason for setting this parameter is that using marginal effects (also known as "Type III" effects) is more robust for unbalanced experimental designs. Since the optionby = "margin"in theadonis2function ignores main effects when interaction effects are present, we automatically setby = "margin"when there are no interaction effects, and setby = "terms"when interaction effects exist. If the user wants to use parameterby, please setby_auto_set = FALSE. Note that this parameter is only available whenmanova_setis provided.permutationsdefault 999; same with the
permutationsparameter inadonis2function of vegan package....parameters passed to
adonis2function ofveganpackage.
Returns
res_manova stored in object with data.frame class.
Examples
t1$cal_manova(manova_all = TRUE)
Method cal_anosim()
Analysis of similarities (ANOSIM) based on the anosim function of vegan package.
Usage
trans_beta$cal_anosim( paired = FALSE, group = NULL, by_group = NULL, p_adjust_method = "fdr", permutations = 999, ... )
Arguments
paireddefault FALSE; whether perform paired test between any two combined groups from all the input groups.
groupdefault NULL; a column name of
sample_table. If NULL, searchgroupvariable stored in the object.by_groupdefault NULL; one column name in
sample_table; used to perform paired comparisions within each group. Only available whenpaired = TRUE.p_adjust_methoddefault "fdr"; p.adjust method; available when
paired = TRUE; see method parameter ofp.adjustfunction for available options.permutationsdefault 999; same with the
permutationsparameter inanosimfunction of vegan package....parameters passed to
anosimfunction ofveganpackage.
Returns
res_anosim stored in object with data.frame class.
Examples
t1$cal_anosim()
Method cal_betadisper()
Multivariate homogeneity test of groups dispersions (PERMDISP) based on betadisper function in vegan package.
Usage
trans_beta$cal_betadisper(...)
Arguments
...parameters passed to
betadisperfunction.
Returns
res_betadisper stored in object.
Examples
t1$cal_betadisper()
Method cal_group_distance()
Convert symmetric distance matrix to distance table of paired samples that are within groups or between groups.
Usage
trans_beta$cal_group_distance( within_group = TRUE, by_group = NULL, ordered_group = NULL, sep = " vs " )
Arguments
within_groupdefault TRUE; whether obtain distance table of paired samples within groups; if FALSE, obtain distances of paired samples between any two groups.
by_groupdefault NULL; one colname name of
sample_tableinmicrotableobject. If provided, transform distances by the providedby_groupparameter. This is especially useful for ordering and filtering values further. Whenwithin_group = TRUE, the result of by_group parameter is the format of paired groups. Whenwithin_group = FALSE, the result of by_group parameter is the format same with the group information insample_table.ordered_groupdefault NULL; a vector representing the ordered elements of
groupparameter; only useful when within_group = FALSE.sepdefault TRUE; a character string to separate the group names after merging them into a new name.
Returns
res_group_distance stored in object.
Examples
\donttest{
t1$cal_group_distance(within_group = TRUE)
}
Method cal_group_distance_diff()
Differential test of converted distances across groups.
Usage
trans_beta$cal_group_distance_diff( group = NULL, by_group = NULL, by_ID = NULL, ... )
Arguments
groupdefault NULL; a column name of
object$res_group_distanceused for the statistics; If NULL, use thegroupinside the object.by_groupdefault NULL; a column of
object$res_group_distanceused to perform the differential test among elements ingroupparameter for each element inby_groupparameter. Soby_grouphas a larger scale thangroupparameter. Thisby_groupis very different from theby_groupparameter in thecal_group_distancefunction.by_IDdefault NULL; a column of
object$res_group_distanceused to perform paired t test or paired wilcox test for the paired data, such as the data of plant compartments for different plant species (ID). Soby_IDshould be the smallest unit of sample collection without any repetition in it....parameters passed to
cal_difffunction oftrans_alphaclass.
Returns
res_group_distance_diff stored in object.
Examples
\donttest{
t1$cal_group_distance_diff()
}
Method plot_group_distance()
Plot the distances of paired groups within or between groups.
Usage
trans_beta$plot_group_distance(plot_group_order = NULL, ...)
Arguments
plot_group_orderdefault NULL; a vector used to order the groups in the plot.
...parameters (except measure) passed to
plot_alphafunction oftrans_alphaclass.
Returns
ggplot.
Examples
\donttest{
t1$plot_group_distance()
}
Method plot_clustering()
Plot clustering result based on the ggdendro package.
Usage
trans_beta$plot_clustering( color_values = RColorBrewer::brewer.pal(8, "Dark2"), measure = NULL, group = NULL, replace_name = NULL )
Arguments
color_valuesdefault RColorBrewer::brewer.pal(8, "Dark2"); color palette for the text.
measuredefault NULL; beta diversity index; If NULL, using the measure when creating object
groupdefault NULL; if provided, use this group to assign color.
replace_namedefault NULL; if provided, use this as label.
Returns
ggplot.
Examples
t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_beta$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_beta$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")
## ------------------------------------------------
## Method `trans_beta$cal_ordination`
## ------------------------------------------------
t1$cal_ordination(method = "PCoA")
## ------------------------------------------------
## Method `trans_beta$plot_ordination`
## ------------------------------------------------
t1$plot_ordination(plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)
## ------------------------------------------------
## Method `trans_beta$cal_manova`
## ------------------------------------------------
t1$cal_manova(manova_all = TRUE)
## ------------------------------------------------
## Method `trans_beta$cal_anosim`
## ------------------------------------------------
t1$cal_anosim()
## ------------------------------------------------
## Method `trans_beta$cal_betadisper`
## ------------------------------------------------
t1$cal_betadisper()
## ------------------------------------------------
## Method `trans_beta$cal_group_distance`
## ------------------------------------------------
t1$cal_group_distance(within_group = TRUE)
## ------------------------------------------------
## Method `trans_beta$cal_group_distance_diff`
## ------------------------------------------------
t1$cal_group_distance_diff()
## ------------------------------------------------
## Method `trans_beta$plot_group_distance`
## ------------------------------------------------
t1$plot_group_distance()
## ------------------------------------------------
## Method `trans_beta$plot_clustering`
## ------------------------------------------------
t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))
Create trans_classifier object for machine-learning-based model prediction.
Description
This class is a wrapper for methods of machine-learning-based classification or regression models, including data pre-processing, feature selection, data split, model training, prediction, confusionMatrix and ROC (Receiver Operator Characteristic) or PR (Precision-Recall) curve.
Author(s): Felipe Mansoldo and Chi Liu
Methods
Public methods
Method new()
Create a trans_classifier object.
Usage
trans_classifier$new( dataset, x.predictors = "Genus", y.response = NULL, n.cores = 1 )
Arguments
datasetan object of
microtableclass.x.predictorsdefault "Genus"; character string or data.frame; a character string represents selecting the corresponding data from
microtable$taxa_abund; data.frame denotes other customized input. See the following available options:- 'Genus'
use Genus level table in
microtable$taxa_abund, or other specific taxonomic rank, e.g., 'Phylum'. If an input level (e.g., ASV) is not found in the names of taxa_abund list, the function will useotu_tableto calculate relative abundance of features.- 'all'
use all the levels stored in
microtable$taxa_abund.- other input
must be a data.frame object. It should have the same format with the tables in microtable$taxa_abund, i.e. rows are features; columns are samples with same names in sample_table.
y.responsedefault NULL; the response variable in
sample_tableof inputmicrotableobject.n.coresdefault 1; the CPU thread used.
Returns
data_feature and data_response stored in the object.
Examples
\donttest{
data(dataset)
t1 <- trans_classifier$new(
dataset = dataset,
x.predictors = "Genus",
y.response = "Group")
}
Method cal_split()
Split data for training and testing.
Usage
trans_classifier$cal_split(prop.train = 3/4)
Arguments
prop.traindefault 3/4; the ratio of the data used for the training.
Returns
data_train and data_test in the object.
Examples
\dontrun{
t1$cal_split(prop.train = 3/4)
}
Method cal_preProcess()
Pre-process (centering, scaling etc.) of features based on the caret::preProcess function. See https://topepo.github.io/caret/pre-processing.html for more details.
Usage
trans_classifier$cal_preProcess(...)
Arguments
...parameters pass to
preProcessfunction of caret package.
Returns
data_preProcess, data_train and data_test in the object.
data_preProcess is the return data generated by the preProcess function of caret package based on the training data.
data_train and data_test are preprocessed training and testing data based on the data_preProcess.
Examples
\dontrun{
# "nzv" removes near zero variance predictors
t1$cal_preProcess(method = c("center", "scale", "nzv"))
}
Method cal_feature_sel()
Perform feature selection. See https://topepo.github.io/caret/feature-selection-overview.html for more details.
Usage
trans_classifier$cal_feature_sel( boruta.maxRuns = 300, boruta.pValue = 0.01, boruta.repetitions = 4, ... )
Arguments
boruta.maxRunsdefault 300; maximal number of importance source runs; passed to the
maxRunsparameter inBorutafunction of Boruta package.boruta.pValuedefault 0.01; p value passed to the pValue parameter in
Borutafunction of Boruta package.boruta.repetitionsdefault 4; repetition runs for the feature selection.
...parameters pass to
Borutafunction of Boruta package.
Returns
optimized data_train and data_test in the object.
Examples
\dontrun{
t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01)
}
Method set_trainControl()
Control parameters for the following training. Please see trainControl function of caret package for details.
Usage
trans_classifier$set_trainControl( method = "repeatedcv", classProbs = TRUE, savePredictions = TRUE, ... )
Arguments
methoddefault 'repeatedcv'; 'repeatedcv': Repeated k-Fold cross validation; see method parameter in
trainControlfunction ofcaretpackage for available options.classProbsdefault TRUE; should class probabilities be computed for classification models?; see classProbs parameter in
caret::trainControlfunction.savePredictionsdefault TRUE; see
savePredictionsparameter incaret::trainControlfunction....parameters pass to
trainControlfunction of caret package.
Returns
trainControl in the object.
Examples
\dontrun{
t1$set_trainControl(method = 'repeatedcv')
}
Method cal_train()
Run the model training. Please see https://topepo.github.io/caret/available-models.html for available models.
Usage
trans_classifier$cal_train(method = "rf", max.mtry = 2, ntree = 500, ...)
Arguments
methoddefault "rf"; "rf": random forest; see method in
trainfunction of caret package for other options. For method = "rf", thetuneGridis set:expand.grid(mtry = seq(from = 1, to = max.mtry))max.mtrydefault 2; for method = "rf"; maximum mtry used in the
tuneGridto do hyperparameter tuning to optimize the model.ntreedefault 500; for method = "rf"; Number of trees to grow. The default 500 is same with the
ntreeparameter inrandomForestfunction in randomForest package. When it is a vector with more than one element, the function will try to optimize the model to select a best one, such asc(100, 500, 1000)....parameters pass to
caret::trainfunction.
Returns
res_train in the object.
Examples
\dontrun{
# random forest
t1$cal_train(method = "rf")
# Support Vector Machines with Radial Basis Function Kernel
t1$cal_train(method = "svmRadial", tuneLength = 15)
}
Method cal_feature_imp()
Get feature importance from the training model.
Usage
trans_classifier$cal_feature_imp(rf_feature_sig = FALSE, ...)
Arguments
rf_feature_sigdefault FALSE; whether calculate feature significance in 'rf' model using
rfPermutepackage; only available formethod = "rf"incal_trainfunction....parameters pass to
varImpfunction of caret package. Ifrf_feature_sigis TURE andtrain_methodis "rf", the parameters will be passed torfPermutefunction of rfPermute package.
Returns
res_feature_imp in the object. One row for each predictor variable. The column(s) are different importance measures.
For the method 'rf', it is MeanDecreaseGini (classification) or IncNodePurity (regression) when rf_feature_sig = FALSE.
Examples
\dontrun{
t1$cal_feature_imp()
}
Method plot_feature_imp()
Bar plot for feature importance.
Usage
trans_classifier$plot_feature_imp( rf_sig_show = NULL, show_sig_group = FALSE, ... )
Arguments
rf_sig_showdefault NULL; "MeanDecreaseAccuracy" (Default) or "MeanDecreaseGini" for random forest classification; "%IncMSE" (Default) or "IncNodePurity" for random forest regression; Only available when
rf_feature_sig = TRUEin functioncal_feature_imp, which generate "MeanDecreaseGini" (and "MeanDecreaseAccuracy") or "%IncMSE" (and "IncNodePurity") in the column names ofres_feature_imp; Function can also generate "Significance" according to the p value.show_sig_groupdefault FALSE; whether show the features with different significant groups; Only available when "Significance" is found in the data.
...parameters pass to
plot_diff_barfunction oftrans_diffpackage.
Returns
ggplot2 object.
Examples
\dontrun{
t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE)
}
Method cal_predict()
Run the prediction.
Usage
trans_classifier$cal_predict(positive_class = NULL)
Arguments
positive_classdefault NULL; see positive parameter in
confusionMatrixfunction of caret package; If positive_class is NULL, use the first group in data as the positive class automatically.
Returns
res_predict, res_confusion_fit and res_confusion_stats stored in the object.
The res_predict is the predicted result for data_test.
Several evaluation metrics in res_confusion_fit are defined as follows:
Accuracy = \frac{TP + TN}{TP + TN + FP + FN}
Sensitivity = Recall = TPR = \frac{TP}{TP + FN}
Specificity = TNR = 1 - FPR = \frac{TN}{TN + FP}
Precision = \frac{TP}{TP + FP}
Prevalence = \frac{TP + FN}{TP + TN + FP + FN}
F1-Score = \frac{2 * Precision * Recall}{Precision + Recall}
Kappa = \frac{Accuracy - Pe}{1 - Pe}
where TP is true positive; TN is ture negative; FP is false positive; and FN is false negative; FPR is False Positive Rate; TPR is True Positive Rate; TNR is True Negative Rate; Pe is the hypothetical probability of chance agreement on the classes for reference and prediction in the confusion matrix. Accuracy represents the ratio of correct predictions. Precision identifies how the model accurately predicted the positive classes. Recall (sensitivity) measures the ratio of actual positives that are correctly identified by the model. F1-score is the weighted average score of recall and precision. The value at 1 is the best performance and at 0 is the worst. Prevalence represents how often positive events occurred. Kappa identifies how well the model is predicting.
Examples
\dontrun{
t1$cal_predict()
}
Method plot_confusionMatrix()
Plot the cross-tabulation of observed and predicted classes with associated statistics based on the results of function cal_predict.
Usage
trans_classifier$plot_confusionMatrix( plot_confusion = TRUE, plot_statistics = TRUE )
Arguments
plot_confusiondefault TRUE; whether plot the confusion matrix.
plot_statisticsdefault TRUE; whether plot the statistics.
Returns
ggplot object.
Examples
\dontrun{
t1$plot_confusionMatrix()
}
Method cal_ROC()
Get ROC (Receiver Operator Characteristic) curve data and the performance data.
Usage
trans_classifier$cal_ROC(input = "pred")
Arguments
inputdefault "pred"; 'pred' or 'train'; 'pred' represents using prediction results; 'train' represents using training results.
Returns
a list res_ROC stored in the object. It has two tables: res_roc and res_pr. AUC: Area Under the ROC Curve.
For the definition of metrics, please refer to the return part of function cal_predict.
Examples
\dontrun{
t1$cal_ROC()
}
Method plot_ROC()
Plot ROC curve.
Usage
trans_classifier$plot_ROC(
plot_type = c("ROC", "PR")[1],
plot_group = "all",
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
add_AUC = TRUE,
plot_method = FALSE,
...
)Arguments
plot_typedefault c("ROC", "PR")[1]; 'ROC' represents ROC (Receiver Operator Characteristic) curve; 'PR' represents PR (Precision-Recall) curve.
plot_groupdefault "all"; 'all' represents all the classes in the model; 'add' represents all adding micro-average and macro-average results, see https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html; other options should be one or more class names, same with the names in Group column of res_ROC$res_roc from cal_ROC function.
color_valuesdefault RColorBrewer::brewer.pal(8, "Dark2"); colors used in the plot.
add_AUCdefault TRUE; whether add AUC in the legend.
plot_methoddefault FALSE; If TRUE, show the method in the legend though only one method is found.
...parameters pass to
geom_pathfunction of ggplot2 package.
Returns
ggplot2 object.
Examples
\dontrun{
t1$plot_ROC(size = 1, alpha = 0.7)
}
Method cal_caretList()
Use caretList function of caretEnsemble package to run multiple models. For the available models, please run names(getModelInfo()).
Usage
trans_classifier$cal_caretList(...)
Arguments
...parameters pass to
caretListfunction ofcaretEnsemblepackage.
Returns
res_caretList_models in the object.
Examples
\dontrun{
t1$cal_caretList(methodList = c('rf', 'svmRadial'))
}
Method cal_caretList_resamples()
Use resamples function of caret package to collect the metric values based on the res_caretList_models data.
Usage
trans_classifier$cal_caretList_resamples(...)
Arguments
...parameters pass to
resamplesfunction ofcaretpackage.
Returns
res_caretList_resamples list and res_caretList_resamples_reshaped table in the object.
Examples
\dontrun{
t1$cal_caretList_resamples()
}
Method plot_caretList_resamples()
Visualize the metric values based on the res_caretList_resamples_reshaped data.
Usage
trans_classifier$plot_caretList_resamples( color_values = RColorBrewer::brewer.pal(8, "Dark2"), ... )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the box....parameters pass to
geom_boxplotfunction ofggplot2package.
Returns
ggplot object.
Examples
\dontrun{
t1$plot_caretList_resamples()
}
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_classifier$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_classifier$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_classifier$new(
dataset = dataset,
x.predictors = "Genus",
y.response = "Group")
## ------------------------------------------------
## Method `trans_classifier$cal_split`
## ------------------------------------------------
## Not run:
t1$cal_split(prop.train = 3/4)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_preProcess`
## ------------------------------------------------
## Not run:
# "nzv" removes near zero variance predictors
t1$cal_preProcess(method = c("center", "scale", "nzv"))
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_feature_sel`
## ------------------------------------------------
## Not run:
t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$set_trainControl`
## ------------------------------------------------
## Not run:
t1$set_trainControl(method = 'repeatedcv')
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_train`
## ------------------------------------------------
## Not run:
# random forest
t1$cal_train(method = "rf")
# Support Vector Machines with Radial Basis Function Kernel
t1$cal_train(method = "svmRadial", tuneLength = 15)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_feature_imp`
## ------------------------------------------------
## Not run:
t1$cal_feature_imp()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_feature_imp`
## ------------------------------------------------
## Not run:
t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_predict`
## ------------------------------------------------
## Not run:
t1$cal_predict()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_confusionMatrix`
## ------------------------------------------------
## Not run:
t1$plot_confusionMatrix()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_ROC`
## ------------------------------------------------
## Not run:
t1$cal_ROC()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_ROC`
## ------------------------------------------------
## Not run:
t1$plot_ROC(size = 1, alpha = 0.7)
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_caretList`
## ------------------------------------------------
## Not run:
t1$cal_caretList(methodList = c('rf', 'svmRadial'))
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$cal_caretList_resamples`
## ------------------------------------------------
## Not run:
t1$cal_caretList_resamples()
## End(Not run)
## ------------------------------------------------
## Method `trans_classifier$plot_caretList_resamples`
## ------------------------------------------------
## Not run:
t1$plot_caretList_resamples()
## End(Not run)
Create trans_diff object for the differential analysis on the taxonomic abundance
Description
This class is a wrapper for a series of differential abundance test and indicator analysis methods, including
LEfSe based on the Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>,
random forest <doi:10.1016/j.geoderma.2018.09.035>, metastat based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>,
non-parametric Kruskal-Wallis Rank Sum Test,
Dunn's Kruskal-Wallis Multiple Comparisons based on the FSA package, Wilcoxon Rank Sum and Signed Rank Tests, t-test, anova,
Scheirer Ray Hare test,
R package metagenomeSeq Paulson et al. (2013) <doi:10.1038/nmeth.2658>,
R package ANCOMBC <doi:10.1038/s41467-020-17041-7>, R package ALDEx2 <doi:10.1371/journal.pone.0067019; 10.1186/2049-2618-2-15>,
R package MicrobiomeStat <doi:10.1186/s13059-022-02655-5>, beta regression <doi:10.18637/jss.v034.i02>, R package maaslin2,
linear mixed-effects model and generalized linear mixed model.
Methods
Public methods
Method new()
Usage
trans_diff$new(
dataset = NULL,
method = c("lefse", "rf", "metastat", "metagenomeSeq", "KW", "KW_dunn", "wilcox",
"t.test", "anova", "scheirerRayHare", "lm", "ancombc2", "ALDEx2_t", "ALDEx2_kw",
"DESeq2", "edgeR", "linda", "maaslin2", "betareg", "lme", "glmm", "glmm_beta")[1],
group = NULL,
taxa_level = "all",
filter_thres = 0,
alpha = 0.05,
p_adjust_method = "fdr",
transformation = NULL,
remove_unknown = TRUE,
lefse_subgroup = NULL,
lefse_min_subsam = 10,
lefse_sub_strict = FALSE,
lefse_sub_alpha = NULL,
lefse_norm = 1e+06,
nresam = 0.6667,
boots = 30,
rf_imp_type = 2,
group_choose_paired = NULL,
metagenomeSeq_count = 1,
ALDEx2_sig = c("wi.eBH", "kw.eBH"),
by_group = NULL,
by_ID = NULL,
beta_pseudo = .Machine$double.eps,
...
)Arguments
datasetdefault NULL;
microtableobject.methoddefault "lefse". Some methods (e.g., "lefse", "KW", "wilcox", "anova", "lm", "betareg", "glmm" and "glmm_beta") invoke the
taxa_abundlist (generally relative abundance data) of input microtable object for the analysis. Some (e.g., "metastat", "metagenomeSeq", "ALDEx2_t", "DESeq2", "edgeR", "ancombc2" and "linda") use theotu_tableof input microtable object for the analysis. Available options include:- 'lefse'
LEfSe method based on Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>
- 'rf'
random forest and non-parametric test method based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>
- 'metastat'
Metastat method for all paired groups based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>
- 'metagenomeSeq'
zero-inflated log-normal model-based differential test method from
metagenomeSeqpackage.- 'KW'
KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
- 'KW_dunn'
Dunn's Kruskal-Wallis Multiple Comparisons when group number > 2; see dunnTest function in
FSApackage- 'wilcox'
Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
- 't.test'
Student's t-Test for all paired groups
- 'anova'
ANOVA for one-way or multi-factor analysis; see
cal_difffunction oftrans_alphaclass- 'scheirerRayHare'
Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment; see
scheirerRayHarefunction ofrcompanionpackage- 'lm'
Linear Model based on the
lmfunction- 'ALDEx2_t'
runs Welch's t and Wilcoxon tests with
ALDEx2package; see also the test parameter inALDEx2::aldexfunction; ALDEx2 uses the centred log-ratio (clr) transformation and estimates per-feature technical variation within each sample using Monte-Carlo instances drawn from the Dirichlet distribution; Reference: <doi:10.1371/journal.pone.0067019> and <doi:10.1186/2049-2618-2-15>; requireALDEx2package to be installed (https://bioconductor.org/packages/release/bioc/html/ALDEx2.html)- 'ALDEx2_kw'
runs Kruskal-Wallace and generalized linear model (glm) test with
ALDEx2package; see also thetestparameter inALDEx2::aldexfunction.- 'DESeq2'
Differential expression analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) distribution based on the
DESeq2package.- 'edgeR'
The
exactTestmethod ofedgeRpackage is implemented.- 'ancombc2'
Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) based on the
ancombc2function fromANCOMBCpackage. If thefix_formulaparameter is not provided, the function can automatically assign it by using group parameter. For this method, thegroupparameter is directly passed to the group parameter ofancombc2function. Reference: <doi:10.1038/s41467-020-17041-7><10.1038/s41592-023-02092-7>; RequireANCOMBCpackage to be installed (https://bioconductor.org/packages/release/bioc/html/ANCOMBC.html)- 'linda'
Linear Model for Differential Abundance Analysis of High-dimensional Compositional Data based on the
lindafunction ofMicrobiomeStatpackage. For linda method, please provide either the group parameter or the formula parameter. When the formula parameter is provided, it should start with '~' as it is directly used by the linda function. If the group parameter is used, the prefix '~' is not necessary as the function can automatically add it. The parameterfeature.dat.type = 'count'has been fixed. Other parameters can be passed to thelindafunction. Reference: <doi:10.1186/s13059-022-02655-5>- 'maaslin2'
finding associations between metadata and potentially high-dimensional microbial multi-omics data based on the Maaslin2 package. Using this option can invoke the
trans_env$cal_corfunction withmethod = "maaslin2".- 'betareg'
Beta Regression based on the
betaregpackage. Please see thebeta_pseudoparameter for the use of pseudo value when there is 0 or 1 in the data- 'lme'
Linear Mixed Effect Model based on the
lmerTestpackage. In the return table, the significance of fixed factors are tested by functionanova. The significance of 'Estimate' in each term of fixed factors comes from the model.- 'glmm'
Generalized linear mixed model (GLMM) based on the
glmmTMBpackage. Theformulaandfamilyparameters are needed. Please refer to glmmTMB package to select the family function, e.g.family = glmmTMB::lognormal(link = "log"). The usage of formula is similar with that in 'lme' method. For more available parameters, please seeglmmTMB::glmmTMBfunction and use parameter passing. In the result, Conditional R2 and Marginal R2 represent the variance explained by both fixed and random effects and the variance explained by fixed effects, respectively. For more details on R2 calculation, please refer to the article <doi: 10.1098/rsif.2017.0213>. The significance of fixed factors are tested by Chi-square test from functioncar::Anova. The significance of 'Estimate' in each term of fixed factors comes from the model.- 'glmm_beta'
Generalized linear mixed model with a family function of beta distribution, developed for the relative abundance (ranging from 0 to 1) of taxa specifically. This is an extension of the GLMM model in
'glmm'option. The only difference is inglmm_betathe family function is fixed with the beta distribution function, i.e.family = glmmTMB::beta_family(link = "logit"). Please see thebeta_pseudoparameter for the use of pseudo value when there is 0 or 1 in the data
groupdefault NULL; sample group used for the comparision; a colname of input
microtable$sample_table; It is necessary when method is not "anova" or method is "anova" but formula is not provided. Once group is provided, the return res_abund will have mean and sd values for group.taxa_leveldefault "all"; 'all' represents using abundance data of all taxonomic ranks; For testing at a specific rank, provide taxonomic rank name, such as "Genus". If the provided taxonomic name is neither 'all' nor a colname in tax_table of input dataset (e.g., "ASV"), the function will use the features in input
microtable$otu_tableautomatically. Note that a specific level (e.g., "ASV") should be provided formethod: "metastat", "metagenomeSeq", "ALDEx2_t", "DESeq2", "edgeR", "ancombc2", "linda", "maaslin2".filter_thresdefault 0; the abundance threshold, such as 0.0005 when the input is relative abundance; only available when method != "metastat". The features with abundances lower than filter_thres will be filtered.
alphadefault 0.05; significance threshold to select taxa when method is "lefse" or "rf"; or used to generate significance letters when method is 'anova' or 'KW_dunn' like the alpha parameter in
cal_diffoftrans_alphaclass.p_adjust_methoddefault "fdr"; p.adjust method; see method parameter of
p.adjustfunction for other available options; "none" means disable p value adjustment; So whenp_adjust_method = "none", P.adj is same with P.unadj.transformationdefault NULL; feature abundance transformation method in the class
trans_norm, such as 'AST' for the arc sine square root transformation. Only available whenmethodis one of "KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "betareg" and "lme".remove_unknowndefault TRUE; whether remove unknown features that donot have clear classification information.
lefse_subgroupdefault NULL; sample sub group used for sub-comparision in lefse; Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>.
lefse_min_subsamdefault 10; sample numbers required in the subgroup test.
lefse_sub_strictdefault FALSE; whether remove the features strictly in the sub-checking. FALSE means only removing the features that have different orders of medians across sub-groups with those across groups and the statistics are also significant. TRUE means removing the features that are not significant in one (or more) sub-test or have different orders of medians across sub-groups with those across groups.
lefse_sub_alphadefault NULL; The significance threshold in the test for lefse sub-groups. NULL means it is same with
alpha.lefse_normdefault 1000000; normalization value used in lefse to scale abundances for each level. A
lefse_normvalue < 0 (e.g., -1) means no normalization same with the LEfSe python version.nresamdefault 0.6667; sample number ratio used in each bootstrap for method = "lefse" or "rf".
bootsdefault 30; bootstrap test number for method = "lefse" or "rf".
rf_imp_typedefault 2; the type of feature importance in random forest when
method = "rf". Same withtypeparameter inimportancefunction ofrandomForestpackage. 1=mean decrease in accuracy (MeanDecreaseAccuracy), 2=mean decrease in node impurity (MeanDecreaseGini).group_choose_paireddefault NULL; a vector used for selecting the required groups for paired testing instead of all paired combinations across groups; Available when method is "metastat", "metagenomeSeq", "ALDEx2_t" or "edgeR".
metagenomeSeq_countdefault 1; Filter features to have at least 'counts' counts.; see the count parameter in MRcoefs function of
metagenomeSeqpackage.ALDEx2_sigdefault c("wi.eBH", "kw.eBH"); which column of the final result is used as the significance asterisk assignment; applied to method = "ALDEx2_t" or "ALDEx2_kw"; the first element is provided to "ALDEx2_t"; the second is provided to "ALDEx2_kw"; for "ALDEx2_t", the available choice is "wi.eBH" (Expected Benjamini-Hochberg corrected P value of Wilcoxon test) and "we.eBH" (Expected BH corrected P value of Welch's t test); for "ALDEx2_kw"; for "ALDEx2_t", the available choice is "kw.eBH" (Expected BH corrected P value of Kruskal-Wallace test) and "glm.eBH" (Expected BH corrected P value of glm test).
by_groupdefault NULL; a column of sample_table used to perform the differential test among groups (
groupparameter) for each group (by_groupparameter). Soby_grouphas a higher level thangroupparameter. Same with theby_groupparameter intrans_alphaclass. Only available when method is one ofc("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare").by_IDdefault NULL; a column of sample_table used to perform paired t test or paired wilcox test for the paired data, such as the data of plant compartments for different plant species (ID). So
by_IDin sample_table should be the smallest unit of sample collection without any repetition in it. Same with theby_IDparameter in trans_alpha class.beta_pseudodefault .Machine$double.eps; the pseudo value used when the parameter
methodis'betareg'or'glmm_beta'. As the beta distribution function limits 0 < response value < 1, a pseudo value will be added for the data that equal to 0. The data that equal to 1 will be replaced by1/(1 + beta_pseudo)....parameters passed to
cal_difffunction oftrans_alphaclass when method is one of "KW", "KW_dunn", "wilcox", "t.test", "anova", "betareg", "lme", "glmm" or "glmm_beta"; passed torandomForest::randomForestfunction when method = "rf"; passed toANCOMBC::ancombc2function when method is "ancombc2" (except tax_level, global and fix_formula parameters); passed toALDEx2::aldexfunction when method = "ALDEx2_t" or "ALDEx2_kw"; passed toDESeq2::DESeqfunction when method = "DESeq2"; passed toMicrobiomeStat::lindafunction when method = "linda"; passed totrans_env$cal_corfunction when method = "maaslin2".
Returns
res_diff and res_abund.
res_abund includes mean abundance of each taxa (Mean), standard deviation (SD), standard error (SE) and sample number (N) in the group (Group).
res_diff is the detailed differential test result depending on the method choice, may containing:
"Comparison": The groups for the comparision, maybe all groups or paired groups. If this column is not found, all groups are used;
"Group": Which group has the maximum median or mean value across the test groups;
For non-parametric methods, median value; For t.test, mean value;
"Taxa": which taxa is used in this comparision;
"Method": Test method used in the analysis depending on the method input;
"LDA" or others: LDA: linear discriminant score in LEfSe;
MeanDecreaseAccuracy and MeanDecreaseGini: mean decreasing in accuracy or in node impurity (gini index) in random forest;
"P.unadj": original p value;
"P.adj": adjusted p value;
"Estimate" and "Std.Error": When method is "betareg", "lm", "lme" or "glmm",
"Estimate" and "Std.Error" represent fitted coefficient and its standard error, respectively;
Others: qvalue: qvalue in metastat analysis.
Examples
\donttest{
data(dataset)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus")
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
}
Method plot_diff_abund()
Plot the abundance of taxa.
The significance can be optionally added in the plot. The taxa displayed are based on the taxa in the 'res_diff' table, selected using parameters. If the user filters out the non-significant taxa from the 'res_diff' table, these taxa will also be filtered from the plot.
Usage
trans_diff$plot_diff_abund( use_number = 1:10, color_values = RColorBrewer::brewer.pal(8, "Dark2"), select_taxa = NULL, simplify_names = TRUE, keep_prefix = TRUE, group_order = NULL, order_x_mean = FALSE, coord_flip = TRUE, add_sig = TRUE, xtext_angle = 45, xtext_size = 13, ytitle_size = 17, ... )
Arguments
use_numberdefault 1:10; numeric vector; the sequences of taxa (1:n) selected in the plot; If n is larger than the number of total significant taxa, automatically use the total number as n.
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); color pallete for groups.select_taxadefault NULL; character vector to provide taxa names. The taxa names should be same with the names shown in the plot, not the 'Taxa' column names in
object$res_diff$Taxa.simplify_namesdefault TRUE; whether use the simplified taxonomic name.
keep_prefixdefault TRUE; whether retain the taxonomic prefix.
group_orderdefault NULL; a vector to order groups, i.e. reorder the legend and colors in plot; If NULL, the function can first check whether the group column of sample_table is factor. If yes, use the levels in it. If provided, overlook the levels in the group of sample_table.
order_x_meandefault FALSE; whether order the taxa in x axis by the means of abundances from large to small. If
TRUE, all other factors in the data will become invalid.coord_flipdefault TRUE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.
add_sigdefault TRUE; whether add the significance label to the plot.
xtext_angledefault 45; number (e.g. 45). Angle of text in x axis.
xtext_sizedefault 13; x axis text size. NULL means the default size in ggplot2. If
coord_flip = TRUE, it represents the text size of the y axis.ytitle_sizedefault 17; y axis title size. If
coord_flip = TRUE, it represents the title size of the x axis (i.e. "Relative abundance")....parameters passed to
plot_alphafunction oftrans_alphaclass.
Returns
ggplot.
Examples
\donttest{
t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus")
t1$plot_diff_abund(use_number = 1:10)
t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
}
Method plot_diff_bar()
Bar plot for indicator index, such as LDA score and P value.
Usage
trans_diff$plot_diff_bar( color_values = RColorBrewer::brewer.pal(8, "Dark2"), color_group_map = FALSE, use_number = 1:10, threshold = NULL, select_group = NULL, keep_full_name = FALSE, keep_prefix = TRUE, group_order = NULL, group_aggre = TRUE, group_two_sep = TRUE, coord_flip = TRUE, add_sig = FALSE, add_sig_increase = 0.1, add_sig_text_size = 5, xtext_angle = 45, xtext_size = 10, ytext_size = NULL, axis_text_y = deprecated(), heatmap_cell = "P.unadj", heatmap_sig = "Significance", heatmap_x = "Factors", heatmap_y = "Taxa", heatmap_lab_fill = "P value", ... )
Arguments
color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette for different groups.color_group_mapdefault FALSE; whether match the colors to groups in order to fix the color in each group when part of groups are not shown in the plot. When
color_group_map = TRUE, the group_order inside the object will be used as full groups set to guide the color extraction.use_numberdefault 1:10; numeric vector; the taxa numbers used in the plot, i.e. 1:n.
thresholddefault NULL; threshold value of indicators for selecting taxa, such as 3 for LDA score of LEfSe.
select_groupdefault NULL; this is used to select the paired group when multiple comparisions are generated; The input select_group must be one of
object$res_diff$Comparison.keep_full_namedefault FALSE; whether keep the taxonomic full lineage names.
keep_prefixdefault TRUE; whether retain the taxonomic prefix, such as "g__".
group_orderdefault NULL; a vector to order the legend and colors in plot; If NULL, the function can first determine whether the group column of
microtable$sample_tableis factor. If yes, use the levels in it. If provided, this parameter can overwrite the levels in the group ofmicrotable$sample_table.group_aggredefault TRUE; whether aggregate the features for each group.
group_two_sepdefault TRUE; whether display the features of two groups on opposite sides of the coordinate axes when there are only two groups in total.
coord_flipdefault TRUE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.
add_sigdefault FALSE; whether add significance label (asterisk) above the bar.
add_sig_increasedefault 0.1; the axis position (
Value + add_sig_increase * max(Value)) from which to add the significance label; only available whenadd_sig = TRUE.add_sig_text_sizedefault 5; the size of added significance label; only available when
add_sig = TRUE.xtext_angledefault 45; number ranging from 0 to 90; used to make x axis text generate angle to reduce text overlap; only available when coord_flip = FALSE.
xtext_sizedefault 10; text size of x axis.
ytext_sizedefault NULL; text size of y axis. NULL means default ggplot2 value.
axis_text_ydeprecated. Please use
ytext_sizeargument instead.heatmap_celldefault "P.unadj"; the column of data for the cell of heatmap when formula with multiple factors is found in the method.
heatmap_sigdefault "Significance"; the column of data for the significance label of heatmap.
heatmap_xdefault "Factors"; the column of data for the x axis of heatmap.
heatmap_ydefault "Taxa"; the column of data for the y axis of heatmap.
heatmap_lab_filldefault "P value"; legend title of heatmap.
...parameters passing to
geom_barfor the bar plot orplot_corfunction intrans_envclass for the heatmap of multiple factors when formula is found in the method.
Returns
ggplot.
Examples
\donttest{
t1$plot_diff_bar(use_number = 1:20)
}
Method plot_diff_cladogram()
Plot the cladogram using taxa with significant difference.
Usage
trans_diff$plot_diff_cladogram( color = RColorBrewer::brewer.pal(8, "Dark2"), group_order = NULL, use_taxa_num = 200, filter_taxa = NULL, use_feature_num = NULL, clade_label_level = 4, select_show_labels = NULL, only_select_show = FALSE, sep = "|", branch_size = 0.2, alpha = 0.2, clade_label_size = 2, clade_label_size_add = 5, clade_label_size_log = exp(1), node_size_scale = 1, node_size_offset = 1, annotation_shape = 22, annotation_shape_size = 5 )
Arguments
colordefault
RColorBrewer::brewer.pal(8, "Dark2"); color palette used in the plot.group_orderdefault NULL; a vector to order the legend in plot; If NULL, the function can first check whether the group column of sample_table is factor. If yes, use the levels in it. If provided, this parameter can overwrite the levels in the group of sample_table. If the number of provided group_order is less than the number of groups in
res_diff$Group, the function will select the groups of group_order automatically.use_taxa_numdefault 200; integer; The taxa number used in the background tree plot; select the taxa according to the mean abundance .
filter_taxadefault NULL; The mean relative abundance used to filter the taxa with low abundance.
use_feature_numdefault NULL; integer; The feature number used in the plot; select the features according to the metric (method = "lefse" or "rf") from high to low.
clade_label_leveldefault 4; the taxonomic level for marking the label with letters, root is the largest.
select_show_labelsdefault NULL; character vector; The features to show in the plot with full label names, not the letters.
only_select_showdefault FALSE; whether only use the the select features in the parameter
select_show_labels.sepdefault "|"; the seperate character in the taxonomic information.
branch_sizedefault 0.2; numberic, size of branch.
alphadefault 0.2; shading of the color.
clade_label_sizedefault 2; basic size for the clade label; please also see
clade_label_size_addandclade_label_size_log.clade_label_size_adddefault 5; added basic size for the clade label; see the formula in
clade_label_size_logparameter.clade_label_size_logdefault
exp(1); the base oflogfunction for added size of the clade label; the size formula:clade_label_size + log(clade_label_level + clade_label_size_add, base = clade_label_size_log); so useclade_label_size_log,clade_label_size_addandclade_label_sizecan totally control the label size for different taxonomic levels.node_size_scaledefault 1; scale for the node size.
node_size_offsetdefault 1; offset for the node size.
annotation_shapedefault 22; shape used in the annotation legend.
annotation_shape_sizedefault 5; size used in the annotation legend.
Returns
ggplot.
Examples
\dontrun{
t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL)
}
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_diff$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_diff$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus")
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
## ------------------------------------------------
## Method `trans_diff$plot_diff_abund`
## ------------------------------------------------
t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus")
t1$plot_diff_abund(use_number = 1:10)
t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
## ------------------------------------------------
## Method `trans_diff$plot_diff_bar`
## ------------------------------------------------
t1$plot_diff_bar(use_number = 1:20)
## ------------------------------------------------
## Method `trans_diff$plot_diff_cladogram`
## ------------------------------------------------
## Not run:
t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL)
## End(Not run)
Create trans_env object to analyze the association between environmental factor and microbial community.
Description
This class is a wrapper for a series of operations associated with environmental measurements, including redundancy analysis, mantel test, correlation analysis and linear fitting.
Methods
Public methods
Method new()
Usage
trans_env$new( dataset = NULL, env_cols = NULL, add_data = NULL, character2numeric = FALSE, standardize = FALSE, complete_na = FALSE )
Arguments
datasetthe object of
microtableClass.env_colsdefault NULL; either numeric vector or character vector to select columns in
microtable$sample_table, i.e. dataset$sample_table. This parameter should be used in the case that all the required environmental data is insample_tableof yourmicrotableobject. Otherwise, please useadd_dataparameter.add_datadefault NULL;
data.frameformat; provide the environmental data in the formatdata.frame; rownames should be sample names. This parameter should be used when themicrotable$sample_tableobject does not have environmental data. Under this circumstance, theenv_colsparameter can not be used because no data can be selected.character2numericdefault FALSE; whether convert all the character or factor columns to numeric type using the
dropallfactorsfunction. If TRUE, character columns will first be attempted to convert to numeric. If that fails, they will be converted to the factor type and then to numeric.standardizedefault FALSE; whether scale environmental variables to zero mean and unit variance.
complete_nadefault FALSE; Whether fill the NA (missing value) in the environmental data; If TRUE, the function can run the interpolation with the
micepackage.
Returns
data_env stored in the object.
Examples
data(dataset) data(env_data_16S) t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
Method cal_diff()
Differential test of environmental variables across groups.
Usage
trans_env$cal_diff(
group = NULL,
by_group = NULL,
method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",
"lme", "glmm")[1],
...
)Arguments
groupdefault NULL; a colname of
sample_tableused to compare values across groups.by_groupdefault NULL; perform differential test among groups (
groupparameter) within each group (by_groupparameter).methoddefault "KW"; see the following available options:
- 'KW'
KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
- 'KW_dunn'
Dunn's Kruskal-Wallis Multiple Comparisons, see
dunnTestfunction inFSApackage- 'wilcox'
Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
- 't.test'
Student's t-Test for all paired groups
- 'anova'
Duncan's new multiple range test for one-way anova; see
duncan.testfunction ofagricolaepackage. For multi-factor anova, seeaov- 'scheirerRayHare'
Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment; see
scheirerRayHarefunction ofrcompanionpackage- 'lm'
Linear model based on the
lmfunction- 'lme'
lme: Linear Mixed Effect Model based on the
lmerTestpackage. Theformulaparameter should be provided.- 'glmm'
Generalized linear mixed model (GLMM) based on the glmmTMB package. The
formulaandfamilyparameters are needed. Please refer to glmmTMB package to select the family function, e.g.family = glmmTMB::lognormal(link = "log"). The usage of formula is similar with that in 'lme' method. For the details of return table, please refer to the help document of trans_diff class.
...parameters passed to
cal_difffunction oftrans_alphaclass.
Returns
res_diff stored in the object.
In the data frame, 'Group' column means that the group has the maximum median or mean value across the test groups;
For non-parametric methods, median value; For t.test, mean value.
Examples
\donttest{
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
}
Method plot_diff()
Plot environmental variables across groups and add the significance label.
Usage
trans_env$plot_diff(...)
Arguments
...parameters passed to
plot_alphaintrans_alphaclass. Please seeplot_alphafunction oftrans_alphafor all the available parameters.
Method cal_autocor()
Calculate the autocorrelations among environmental variables.
Usage
trans_env$cal_autocor( group = NULL, ggpairs = TRUE, color_values = RColorBrewer::brewer.pal(8, "Dark2"), alpha = 0.8, ... )
Arguments
groupdefault NULL; a colname of sample_table; used to perform calculations for different groups.
ggpairsdefault TRUE; whether use
GGally::ggpairsfunction to plot the correlation results. Ifggpairs = FALSE, the function will output a table with all the values instead of a graph. In this case, the function will callcal_corto calculate autocorrelation instead of using the ggpairs function in GGally, so please use parameter passing to control more options.color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); colors palette.alphadefault 0.8; the alpha value to add transparency in colors; useful when group is not NULL.
...parameters passed to
GGally::ggpairswhenggpairs = TRUEor passed tocal_coroftrans_envclass whenggpairs = FALSE.
Returns
ggmatrix when ggpairs = TRUE or data.frame object when ggpairs = FALSE.
Examples
\dontrun{
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
}
Method cal_ordination()
Redundancy analysis (RDA) and Correspondence Analysis (CCA) based on the vegan package.
Usage
trans_env$cal_ordination(
method = c("RDA", "dbRDA", "CCA")[1],
feature_sel = FALSE,
taxa_level = NULL,
taxa_filter_thres = NULL,
use_measure = NULL,
add_matrix = NULL,
...
)Arguments
methoddefault c("RDA", "dbRDA", "CCA")[1]; the ordination method.
feature_seldefault FALSE; whether perform the feature selection based on forward selection method.
taxa_leveldefault NULL; the taxonomic level used in RDA or CCA. Default NULL means using the merged data at "Genus" level. "ASV" or "OTU" can also be provided for the use of
otu_tablein microtable object.taxa_filter_thresdefault NULL; relative abundance threshold used to filter taxa when method is "RDA" or "CCA".
use_measuredefault NULL; a name of beta diversity matrix; only available when parameter
method = "dbRDA"; If not provided, use the first beta diversity matrix in themicrotable$beta_diversityautomatically.add_matrixdefault NULL; additional distance matrix provided, when the user does not want to use the beta diversity matrix within the dataset; only available when method = "dbRDA".
...paremeters passed to
dbrda,rdaorccafunction according to themethodparameter.
Returns
res_ordination and res_ordination_R2 stored in the object.
Examples
\donttest{
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
}
Method cal_ordination_anova()
Use anova to test the significance of the terms and axis in ordination.
Usage
trans_env$cal_ordination_anova(...)
Arguments
...parameters passed to
anovafunction.
Returns
res_ordination_terms and res_ordination_axis stored in the object.
Examples
\donttest{
t1$cal_ordination_anova()
}
Method cal_ordination_envfit()
Fit each environmental vector onto the ordination to obtain the contribution of each variable.
Usage
trans_env$cal_ordination_envfit(...)
Arguments
...the parameters passed to
vegan::envfitfunction.
Returns
res_ordination_envfit stored in the object.
Examples
\donttest{
t1$cal_ordination_envfit()
}
Method trans_ordination()
Transform ordination results for the following plot.
Usage
trans_env$trans_ordination( show_taxa = 10, adjust_arrow_length = FALSE, min_perc_env = 0.1, max_perc_env = 0.8, min_perc_tax = 0.1, max_perc_tax = 0.8 )
Arguments
show_taxadefault 10; taxa number shown in the plot.
adjust_arrow_lengthdefault FALSE; whether adjust the arrow length to be clearer.
min_perc_envdefault 0.1; used for scaling up the minimum of env arrow; multiply by the maximum distance between samples and origin.
max_perc_envdefault 0.8; used for scaling up the maximum of env arrow; multiply by the maximum distance between samples and origin.
min_perc_taxdefault 0.1; used for scaling up the minimum of tax arrow; multiply by the maximum distance between samples and origin.
max_perc_taxdefault 0.8; used for scaling up the maximum of tax arrow; multiply by the maximum distance between samples and origin.
Returns
res_ordination_trans stored in the object.
Examples
\donttest{
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
}
Method plot_ordination()
plot ordination result.
Usage
trans_env$plot_ordination( plot_color = NULL, plot_shape = NULL, color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14), env_text_color = "black", env_arrow_color = "grey30", taxa_text_color = "firebrick1", taxa_arrow_color = "firebrick1", env_text_size = 3.7, taxa_text_size = 3, taxa_text_prefix = FALSE, taxa_text_italic = TRUE, plot_type = "point", point_size = 3, point_alpha = 0.8, centroid_segment_alpha = 0.6, centroid_segment_size = 1, centroid_segment_linetype = 3, ellipse_chull_fill = TRUE, ellipse_chull_alpha = 0.1, ellipse_level = 0.9, ellipse_type = "t", add_sample_label = NULL, env_nudge_x = NULL, env_nudge_y = NULL, taxa_nudge_x = NULL, taxa_nudge_y = NULL, ... )
Arguments
plot_colordefault NULL; a colname of
sample_tableto assign colors to different groups.plot_shapedefault NULL; a colname of
sample_tableto assign shapes to different groups.color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.shape_valuesdefault c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2 tutorial.
env_text_colordefault "black"; environmental variable text color.
env_arrow_colordefault "grey30"; environmental variable arrow color.
taxa_text_colordefault "firebrick1"; taxa text color.
taxa_arrow_colordefault "firebrick1"; taxa arrow color.
env_text_sizedefault 3.7; environmental variable text size.
taxa_text_sizedefault 3; taxa text size.
taxa_text_prefixdefault FALSE; whether show the prefix (e.g., g__) of taxonomic information in the text.
taxa_text_italicdefault TRUE; "italic"; whether use "italic" style for the taxa text.
plot_typedefault "point"; plotting type of samples; one or more elements of "point", "ellipse", "chull", "centroid" and "none"; "none" denotes nothing.
- 'point'
add point
- 'ellipse'
add confidence ellipse for points of each group
- 'chull'
add convex hull for points of each group
- 'centroid'
add centroid line of each group
point_sizedefault 3; point size in plot when "point" is in
plot_type.point_sizecan also be a variable name insample_table, such as "pH".point_alphadefault .8; point transparency in plot when "point" is in
plot_type.centroid_segment_alphadefault 0.6; segment transparency in plot when "centroid" is in
plot_type.centroid_segment_sizedefault 1; segment size in plot when "centroid" is in
plot_type.centroid_segment_linetypedefault 3; an integer; the line type related with centroid in plot when "centroid" is in
plot_type.ellipse_chull_filldefault TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alphadefault 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in
plot_type.ellipse_leveldefault .9; confidence level of ellipse when "ellipse" is in
plot_type.ellipse_typedefault "t"; ellipse type when "ellipse" is in
plot_type; see type parameter instat_ellipsefunction of ggplot2 package.add_sample_labeldefault NULL; the column name in sample table, if provided, show the point name in plot.
env_nudge_xdefault NULL; numeric vector to adjust the env text x axis position; passed to nudge_x parameter of
ggrepel::geom_text_repelfunction; default NULL represents automatic adjustment; the length must be same with the row number ofobject$res_ordination_trans$df_arrows. For example, if there are 5 env variables, env_nudge_x should be something likec(0.1, 0, -0.2, 0, 0). Note that this parameter and env_nudge_y is generally used when the automatic text adjustment is not very well.env_nudge_ydefault NULL; numeric vector to adjust the env text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of
object$res_ordination_trans$df_arrows. For example, if there are 5 env variables, env_nudge_y should be something likec(0.1, 0, -0.2, 0, 0).taxa_nudge_xdefault NULL; numeric vector to adjust the taxa text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of
object$res_ordination_trans$df_arrows_spe. For example, if 3 taxa are shown, taxa_nudge_x should be something likec(0.3, -0.2, 0).taxa_nudge_ydefault NULL; numeric vector to adjust the taxa text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of
object$res_ordination_trans$df_arrows_spe. For example, if 3 taxa are shown, taxa_nudge_y should be something likec(-0.2, 0, 0.4)....paremeters passed to
geom_pointfor controlling sample points.
Returns
ggplot object.
Examples
\donttest{
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0),
env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))
}
Method cal_mantel()
Mantel test between beta diversity matrix and environmental data.
Usage
trans_env$cal_mantel( partial_mantel = FALSE, add_matrix = NULL, use_measure = NULL, method = "pearson", p_adjust_method = "fdr", by_group = NULL, ... )
Arguments
partial_manteldefault FALSE; whether use partial mantel test; If TRUE, use other all measurements as the zdis in each calculation.
add_matrixdefault NULL; additional distance matrix provided when the beta diversity matrix in the dataset is not used.
use_measuredefault NULL; a name of beta diversity matrix. If necessary and not provided, use the first beta diversity matrix.
methoddefault "pearson"; one of "pearson", "spearman" and "kendall"; correlation method; see method parameter in
vegan::mantelfunction.p_adjust_methoddefault "fdr"; p.adjust method; see method parameter of
p.adjustfunction for available options.by_groupdefault NULL; one column name or number in sample_table; used to perform mantel test for different groups separately.
...paremeters passed to
mantelof vegan package.
Returns
res_mantel in object.
Examples
\donttest{
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
}
Method cal_cor()
Calculate the correlations between taxonomic abundance and environmental variables. Actually, it can also be applied to other correlation between any two variables from two tables.
Usage
trans_env$cal_cor(
use_data = c("Genus", "all", "other")[1],
method = c("pearson", "spearman", "kendall", "maaslin2")[1],
partial = FALSE,
partial_fix = NULL,
add_abund_table = NULL,
filter_thres = 0,
use_taxa_num = NULL,
other_taxa = NULL,
p_adjust_method = "fdr",
p_adjust_type = c("All", "Taxa", "Env")[1],
by_group = NULL,
group_use = NULL,
group_select = NULL,
taxa_name_full = TRUE,
tmp_input_maaslin2 = "tmp_input",
tmp_output_maaslin2 = "tmp_output",
cor_method = deprecated(),
...
)Arguments
use_datadefault "Genus"; "Genus", "all" or "other"; "Genus" or other taxonomic names (e.g., "Phylum", "ASV"): invoke taxonomic abundance table in
taxa_abundlist of themicrotableobject; "all": merge all the taxonomic abundance tables intaxa_abundlist into one; "other": provide additional taxa names by assigningother_taxaparameter.methoddefault "pearson"; "pearson", "spearman", "kendall" or "maaslin2"; correlation method. "pearson", "spearman" or "kendall" all refer to the correlation analysis based on the
cor.testfunction in R. "maaslin2" is the method inMaaslin2package for finding associations between metadata and potentially high-dimensional microbial multi-omics data.partialdefault FALSE; whether perform partial correlation based on the
ppcorpackage. Available whenmethodis "pearson", "spearman" or "kendall".partial_fixdefault NULL; selected environmental variable names used as third group of variables in all the partial correlations. If NULL; all the variables (except the one for correlation) in the environmental data will be used as the third group of variables. Otherwise, the function will control for the provided variables (one or more) in all the partial correlations, and the variables in
partial_fixwill not be employed anymore in the correlation analysis.add_abund_tabledefault NULL; additional data table to be used. Row names must be sample names.
filter_thresdefault 0; the abundance threshold, such as 0.0005 when the input is relative abundance. The features with abundances lower than filter_thres will be filtered. This parameter cannot be applied when add_abund_table parameter is provided.
use_taxa_numdefault NULL; integer; a number used to select high abundant taxa; only useful when
use_dataparameter is a taxonomic level, e.g., "Genus".other_taxadefault NULL; character vector containing a series of feature names; available when
use_data = "other"; provided names should be standard full names used to select taxa from all the tables intaxa_abundlist of themicrotableobject; please refer to the example.p_adjust_methoddefault "fdr"; p.adjust method; see method parameter of
p.adjustfunction for available options.p_adjust_method = "none"can disable the p value adjustment.p_adjust_typedefault "All"; "All", "Taxa" or "Env"; P value adjustment type. "Env": adjustment for each environmental variable separately; "Taxa": adjustment for each taxon separately; "All": adjustment for all the data together no matter whether
by_groupis provided.by_groupdefault NULL; one column name or number in sample_table; calculate correlations for different groups separately.
group_usedefault NULL; numeric or character vector to select one column in sample_table for selecting samples; together with group_select.
group_selectdefault NULL; the group name used; remain samples within the group.
taxa_name_fulldefault TRUE; Whether use the complete taxonomic name of taxa.
tmp_input_maaslin2default "tmp_input"; the temporary folder used to save the input files for Maaslin2.
tmp_output_maaslin2default "tmp_output"; the temporary folder used to save the output files of Maaslin2.
cor_methoddeprecated. Please use
methodargument instead....parameters passed to
Maaslin2function ofMaaslin2package.
Returns
res_cor stored in the object.
Examples
\donttest{
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])
}
Method plot_cor()
Plot correlation heatmap.
Usage
trans_env$plot_cor(
color_vector = c("#053061", "white", "#A50026"),
color_palette = NULL,
filter_feature = NULL,
filter_env = NULL,
keep_full_name = FALSE,
keep_prefix = TRUE,
text_y_order = NULL,
text_x_order = NULL,
xtext_angle = 30,
xtext_size = 10,
xtext_color = "black",
ytext_italic = FALSE,
ytext_size = NULL,
ytext_color = "black",
ytext_position = "right",
sig_label_size = 4,
font_family = NULL,
cluster_ggplot = "none",
cluster_height_rows = 0.2,
cluster_height_cols = 0.2,
na.value = "grey50",
trans = "identity",
ylab_type_italic = deprecated(),
text_y_position = deprecated(),
...
)Arguments
color_vectordefault
c("#053061", "white", "#A50026"); colors with only three values representing low, middle and high values.color_palettedefault NULL; a customized palette with more color values to be used instead of the parameter
color_vector.filter_featuredefault NULL; character vector; used to filter features that only have labels in the
filter_featurevector. For example,filter_feature = ""can be used to remove features that only have "", no any "*".filter_envdefault NULL; character vector; used to filter environmental variables that only have labels in the
filter_envvector. For example,filter_env = ""can be used to remove features that only have "", no any "*".keep_full_namedefault FALSE; whether use the complete taxonomic name.
keep_prefixdefault TRUE; whether retain the taxonomic prefix.
text_y_orderdefault NULL; character vector; customized text for y axis; shown in the plot from the top down. The input should be consistent with the feature names in the
res_cortable.text_x_orderdefault NULL; character vector; customized text for x axis.
xtext_angledefault 30; number ranging from 0 to 90; used to adjust x axis text angle.
xtext_sizedefault 10; x axis text size.
xtext_colordefault "black"; x axis text color.
ytext_italicdefault FALSE; whether use italic for y axis text.
ytext_sizedefault NULL; y axis text size. NULL means default ggplot2 value.
ytext_colordefault "black"; y axis text color.
ytext_positiondefault "right"; "left" or "right"; the y axis text position.
sig_label_sizedefault 4; the size of significance label shown in the cell.
font_familydefault NULL; font family used.
cluster_ggplotdefault "none"; add clustering dendrogram for
ggplot2based heatmap. Available options: "none", "row", "col" or "both". "none": no any clustering used; "row": add clustering for rows; "col": add clustering for columns; "both": add clustering for both rows and columns.cluster_height_rowsdefault 0.2, the dendrogram plot height for rows; available when
cluster_ggplotis not "none".cluster_height_colsdefault 0.2, the dendrogram plot height for columns; available when
cluster_ggplotis not "none".na.valuedefault "grey50"; the color for the missing values.
transdefault "identity"; the transformation for continuous scales in the legend; see the
transitem inggplot2::scale_colour_gradientn.ylab_type_italicdeprecated. Please use
ytext_italicargument instead.text_y_positiondeprecated. Please use
ytext_positionargument instead....paremeters passed to
ggplot2::geom_tile.
Returns
ggplot2 object.
Examples
\donttest{
t1$plot_cor()
}
Method plot_scatterfit()
Scatter plot with fitted line based on the correlation or regression.
The most important thing is to make sure that the input x and y
have correponding sample orders. If one of x and y is a matrix, the other will be also transformed to matrix with Euclidean distance.
Then, both of them are transformed to be vectors. If x or y is a vector with a single value, x or y will be
assigned according to the column selection of the data_env in the object.
Usage
trans_env$plot_scatterfit(
x = NULL,
y = NULL,
group = NULL,
group_order = NULL,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
shape_values = NULL,
type = c("cor", "lm")[1],
cor_method = "pearson",
label_sep = ";",
label.x.npc = "left",
label.y.npc = "top",
label.x = NULL,
label.y = NULL,
x_axis_title = "",
y_axis_title = "",
point_size = 5,
point_alpha = 0.6,
line_size = 0.8,
line_color = "black",
line_se = TRUE,
line_se_color = "grey70",
line_alpha = 0.5,
pvalue_trim = 4,
cor_coef_trim = 3,
lm_equation = TRUE,
lm_fir_trim = 2,
lm_sec_trim = 2,
lm_squ_trim = 2,
...
)Arguments
xdefault NULL; a single numeric or character value, a vector, or a distance matrix used for the x axis. If x is a single value, it will be used to select the column of
data_envin the object. If x is a distance matrix, it will be transformed to be a vector.ydefault NULL; a single numeric or character value, a vector, or a distance matrix used for the y axis. If y is a single value, it will be used to select the column of
data_envin the object. If y is a distance matrix, it will be transformed to be a vector.groupdefault NULL; a character vector; if length is 1, must be a colname of
sample_tablein the input dataset; Otherwise, group should be a vector having same length with x/y (for vector) or column number of x/y (for matrix).group_orderdefault NULL; a vector used to order groups, i.e. reorder the legend and colors in plot when group is not NULL; If group_order is NULL and group is provided, the function can first check whether the group column of
sample_tableis factor. If group_order is provided, disable the group orders or factor levels in thegroupcolumn ofsample_table.color_valuesdefault
RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.shape_valuesdefault NULL; a numeric vector for point shape types of groups when group is not NULL, see ggplot2 tutorial.
typedefault c("cor", "lm")[1]; "cor": correlation; "lm" for regression.
cor_methoddefault "pearson"; one of "pearson", "kendall" and "spearman"; correlation method.
label_sepdefault ";"; the separator string between different label parts.
label.x.npcdefault "left"; can be numeric or character vector of the same length as the number of groups and/or panels. If too short, they will be recycled.
- numeric
value should be between 0 and 1. Coordinates to be used for positioning the label, expressed in "normalized parent coordinates"
- character
allowed values include: i) one of c('right', 'left', 'center', 'centre', 'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre', 'middle') for y-axis.
label.y.npcdefault "top"; same usage with label.x.npc; also see
label.y.npcparameter ofggpubr::stat_corfunction.label.xdefault NULL; x axis absolute position for adding the statistic label.
label.ydefault NULL; x axis absolute position for adding the statistic label.
x_axis_titledefault ""; the title of x axis.
y_axis_titledefault ""; the title of y axis.
point_sizedefault 5; point size value.
point_alphadefault 0.6; alpha value for the point color transparency.
line_sizedefault 0.8; line size value.
line_colordefault "black"; fitted line color; only available when
group = NULL.line_sedefault TRUE; Whether show the confidence interval for the fitting.
line_se_colordefault "grey70"; the color to fill the confidence interval when
line_se = TRUE.line_alphadefault 0.5; alpha value for the color transparency of line confidence interval.
pvalue_trimdefault 4; trim the decimal places of p value.
cor_coef_trimdefault 3; trim the decimal places of correlation coefficient.
lm_equationdefault TRUE; whether include the equation in the label when
type = "lm".lm_fir_trimdefault 2; trim the decimal places of first coefficient in regression.
lm_sec_trimdefault 2; trim the decimal places of second coefficient in regression.
lm_squ_trimdefault 2; trim the decimal places of R square in regression.
...other arguments passed to
geom_textorgeom_label.
Returns
ggplot.
Examples
\donttest{
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x =
dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
}
Method print()
Print the trans_env object.
Usage
trans_env$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_env$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_env$new`
## ------------------------------------------------
data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
## ------------------------------------------------
## Method `trans_env$cal_diff`
## ------------------------------------------------
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
## ------------------------------------------------
## Method `trans_env$cal_autocor`
## ------------------------------------------------
## Not run:
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
## End(Not run)
## ------------------------------------------------
## Method `trans_env$cal_ordination`
## ------------------------------------------------
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
## ------------------------------------------------
## Method `trans_env$cal_ordination_anova`
## ------------------------------------------------
t1$cal_ordination_anova()
## ------------------------------------------------
## Method `trans_env$cal_ordination_envfit`
## ------------------------------------------------
t1$cal_ordination_envfit()
## ------------------------------------------------
## Method `trans_env$trans_ordination`
## ------------------------------------------------
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
## ------------------------------------------------
## Method `trans_env$plot_ordination`
## ------------------------------------------------
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"),
centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0),
env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))
## ------------------------------------------------
## Method `trans_env$cal_mantel`
## ------------------------------------------------
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
## ------------------------------------------------
## Method `trans_env$cal_cor`
## ------------------------------------------------
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])
## ------------------------------------------------
## Method `trans_env$plot_cor`
## ------------------------------------------------
t1$plot_cor()
## ------------------------------------------------
## Method `trans_env$plot_scatterfit`
## ------------------------------------------------
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x =
dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
Create trans_func object for functional prediction.
Description
This class is a wrapper for a series of functional prediction analysis on species and communities, including the prokaryotic trait prediction based on Louca et al. (2016) <doi:10.1126/science.aaf4507> and Lim et al. (2020) <10.1038/s41597-020-0516-5>, or fungal trait prediction based on Nguyen et al. (2016) <10.1016/j.funeco.2015.06.006> and Polme et al. (2020) <doi:10.1007/s13225-020-00466-2>; functional redundancy calculation and metabolic pathway abundance prediction Abhauer et al. (2015) <10.1093/bioinformatics/btv287>.
Active bindings
func_group_liststore and show the function group list
Methods
Public methods
Method new()
Create the trans_func object. This function can identify the data type for Prokaryotes or Fungi automatically.
Usage
trans_func$new(dataset = NULL)
Arguments
datasetthe object of
microtableClass.
Returns
for_what: "prok" or "fungi" or NA, "prok" represent prokaryotes. "fungi" represent fungi. NA stand for unknown according to the Kingdom information.
In this case, if the user still want to use the function to identify species traits, please provide "prok" or "fungi" manually,
e.g. t1$for_what <- "prok".
Examples
data(dataset) t1 <- trans_func$new(dataset = dataset)
Method cal_spe_func()
Identify traits of each feature by matching taxonomic assignments to functional database.
Usage
trans_func$cal_spe_func(
prok_database = c("FAPROTAX", "NJC19")[1],
fungi_database = c("FUNGuild", "FungalTraits")[1],
FUNGuild_confidence = c("Highly Probable", "Probable", "Possible")
)Arguments
prok_databasedefault "FAPROTAX";
"FAPROTAX"or"NJC19"; select a prokaryotic trait database:- 'FAPROTAX'
FAPROTAX; Reference: Louca et al. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272. <doi:10.1126/science.aaf4507>
- 'NJC19'
NJC19: Lim et al. (2020). Large-scale metabolic interaction network of the mouse and human gut microbiota. Scientific Data, 7(1). <10.1038/s41597-020-0516-5>. Note that the matching in this database is performed at the species level, hence utilizing it demands a higher level of precision in regards to the assignments of species in the taxonomic information table.
fungi_databasedefault "FUNGuild";
"FUNGuild"or"FungalTraits"; select a fungal trait database:- 'FUNGuild'
Nguyen et al. (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20(1), 241-248, <doi:10.1016/j.funeco.2015.06.006>
- 'FungalTraits'
version: FungalTraits_1.2_ver_16Dec_2020V.1.2; Polme et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity 105, 1-16 (2020). <doi:10.1007/s13225-020-00466-2>
FUNGuild_confidencedefault c("Highly Probable", "Probable", "Possible"). Selected 'confidenceRanking' when
fungi_database = "FUNGuild".
Returns
res_spe_func stored in object.
Examples
\donttest{
t1$cal_spe_func(prok_database = "FAPROTAX")
}
Method cal_spe_func_perc()
Calculating the percentages of species with specific trait in communities. The percentages of the taxa with specific trait can reflect corresponding functional potential in the community. So this method is one representation of functional redundancy (FR) without the consideration of phylogenetic distance among taxa. The FR is defined:
FR_{kj}^{unweighted} = \frac{N_{j}}{N_{k}}
FR_{kj}^{weighted} = \frac{\sum_{i=1}^{N_{j}} A_{i}}{\sum_{i=1}^{N_{k}} A_{i}}
where FR_{kj} denotes the FR for sample k and function j. N_{k} is the species number in sample k.
N_{j} is the number of species with function j in sample k.
A_{i} is the abundance (counts) of species i in sample k.
Usage
trans_func$cal_spe_func_perc(abundance_weighted = FALSE, perc = TRUE, dec = 2)
Arguments
abundance_weighteddefault FALSE; whether use abundance of taxa. If FALSE, calculate the functional population percentage. If TRUE, calculate the functional individual percentage.
percdefault TRUE; whether to use percentages in the result. If TRUE, value is bounded between 0 and 100. If FALSE, the result is relative proportion ('abundance_weighted = FALSE') or relative abundance ('abundance_weighted = TRUE') bounded between 0 and 1.
decdefault 2; remained decimal places.
Returns
res_spe_func_perc stored in the object.
Examples
\donttest{
t1$cal_spe_func_perc(abundance_weighted = TRUE)
}
Method show_prok_func()
Show the annotation information for a function of prokaryotes from FAPROTAX database.
Usage
trans_func$show_prok_func(use_func = NULL)
Arguments
use_funcdefault NULL; the function name.
Returns
None.
Examples
\donttest{
t1$show_prok_func(use_func = "methanotrophy")
}
Method trans_spe_func_perc()
Transform the res_spe_func_perc table to the long table format for the following visualization.
Also add the group information if the database has hierarchical groups.
Usage
trans_func$trans_spe_func_perc()
Returns
res_spe_func_perc_trans stored in the object.
Examples
\donttest{
t1$trans_spe_func_perc()
}
Method plot_spe_func_perc()
Plot the percentages of species with specific trait in communities.
Usage
trans_func$plot_spe_func_perc( add_facet = TRUE, order_x = NULL, color_gradient_low = "#00008B", color_gradient_high = "#9E0142" )
Arguments
add_facetdefault TRUE; whether use group names as the facets in the plot, see
trans_func$func_group_listobject.order_xdefault NULL; character vector; to sort the x axis text; can be also used to select partial samples to show.
color_gradient_lowdefault "#00008B"; the color used as the low end in the color gradient.
color_gradient_highdefault "#9E0142"; the color used as the high end in the color gradient.
Returns
ggplot2.
Examples
\donttest{
t1$plot_spe_func_perc()
}
Method cal_tax4fun2()
Predict functional potential of communities with Tax4Fun2 method. The function was adapted from the raw Tax4Fun2 package to make it compatible with the microtable object. Pleas cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
Usage
trans_func$cal_tax4fun2( blast_tool_path = NULL, path_to_reference_data = "Tax4Fun2_ReferenceData_v2", path_to_temp_folder = NULL, database_mode = "Ref99NR", normalize_by_copy_number = T, min_identity_to_reference = 97, use_uproc = T, num_threads = 1, normalize_pathways = F )
Arguments
blast_tool_pathdefault NULL; the folder path, e.g., ncbi-blast-2.5.0+/bin ; blast tools folder downloaded from "ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+" ; e.g., ncbi-blast-2.5.0+-x64-win64.tar.gz for windows system; if blast_tool_path is NULL, search the tools in the environmental path variable.
path_to_reference_datadefault "Tax4Fun2_ReferenceData_v2"; the path that points to files used in the prediction; The directory must contain the Ref99NR or Ref100NR folder; download Ref99NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/DkoZIyZpMNbrzSw/download" or Ref100NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/jIByczak9ZAFUB4/download".
path_to_temp_folderdefault NULL; The temporary folder to store the logfile, intermediate file and result files; if NULL, use the default temporary in the computer system.
database_modedefault 'Ref99NR'; "Ref99NR" or "Ref100NR"; Ref99NR: 99% clustering reference database; Ref100NR: no clustering.
normalize_by_copy_numberdefault TRUE; whether normalize the result by the 16S rRNA copy number in the genomes.
min_identity_to_referencedefault 97; the sequences identity threshold used for finding the nearest species.
use_uprocdefault TRUE; whether use UProC to functionally anotate the genomes in the reference data.
num_threadsdefault 1; the threads used in the blastn.
normalize_pathwaysdefault FALSE; Different to Tax4Fun, when converting from KEGG functions to KEGG pathways, Tax4Fun2 does not equally split KO gene abundances between pathways a functions is affiliated to. The full predicted abundance is affiliated to each pathway. Use TRUE to split the abundances (default is FALSE).
Returns
res_tax4fun2_KO and res_tax4fun2_pathway in object.
Examples
\dontrun{
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin",
path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
}
Method cal_tax4fun2_FRI()
Calculate (multi-) functional redundancy index (FRI) of prokaryotic community with Tax4Fun2 method. This function is used to calculating aFRI and rFRI use the intermediate files generated by the function cal_tax4fun2(). please also cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
Usage
trans_func$cal_tax4fun2_FRI()
Returns
res_tax4fun2_aFRI and res_tax4fun2_rFRI in object.
Examples
\dontrun{
t1$cal_tax4fun2_FRI()
}
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_func$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_func$new`
## ------------------------------------------------
data(dataset)
t1 <- trans_func$new(dataset = dataset)
## ------------------------------------------------
## Method `trans_func$cal_spe_func`
## ------------------------------------------------
t1$cal_spe_func(prok_database = "FAPROTAX")
## ------------------------------------------------
## Method `trans_func$cal_spe_func_perc`
## ------------------------------------------------
t1$cal_spe_func_perc(abundance_weighted = TRUE)
## ------------------------------------------------
## Method `trans_func$show_prok_func`
## ------------------------------------------------
t1$show_prok_func(use_func = "methanotrophy")
## ------------------------------------------------
## Method `trans_func$trans_spe_func_perc`
## ------------------------------------------------
t1$trans_spe_func_perc()
## ------------------------------------------------
## Method `trans_func$plot_spe_func_perc`
## ------------------------------------------------
t1$plot_spe_func_perc()
## ------------------------------------------------
## Method `trans_func$cal_tax4fun2`
## ------------------------------------------------
## Not run:
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin",
path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
## End(Not run)
## ------------------------------------------------
## Method `trans_func$cal_tax4fun2_FRI`
## ------------------------------------------------
## Not run:
t1$cal_tax4fun2_FRI()
## End(Not run)
Create trans_network object for network analysis.
Description
This class is a wrapper for a series of network analysis methods, including the network construction, topological attributes analysis, eigengene analysis, network subsetting, node and edge properties, network visualization and other operations.
Methods
Public methods
Method new()
Create the trans_network object, store the important intermediate data
and calculate correlations if cor_method parameter is not NULL.
Usage
trans_network$new(
dataset = NULL,
cor_method = NULL,
use_WGCNA_pearson_spearman = FALSE,
use_NetCoMi_pearson_spearman = FALSE,
use_sparcc_method = c("NetCoMi", "SpiecEasi")[1],
taxa_level = "OTU",
filter_thres = 0,
nThreads = 1,
SparCC_simu_num = 100,
env_cols = NULL,
add_data = NULL,
...
)Arguments
datasetdefault NULL; the object of
microtableclass. Default NULL means customized analysis.cor_methoddefault NULL; NULL or one of "bray", "pearson", "spearman", "sparcc", "bicor", "cclasso" and "ccrepe"; All the methods refered to
NetCoMipackage are performed based onnetConstructfunction ofNetCoMipackage and requireNetCoMito be installed from Github (https://github.com/stefpeschel/NetCoMi); For the algorithm details, please see Peschel et al. 2020 Brief. Bioinform <doi: 10.1093/bib/bbaa290>;- NULL
NULL denotes non-correlation network, i.e. do not use correlation-based network. If so, the return res_cor_p list will be NULL.
- 'bray'
1-B, where B is Bray-Curtis dissimilarity; based on
vegan::vegdistfunction- 'pearson'
Pearson correlation; If
use_WGCNA_pearson_spearmananduse_NetCoMi_pearson_spearmanare both FALSE, use the functioncor.testin R;use_WGCNA_pearson_spearman = TRUEinvokecorAndPvaluefunction ofWGCNApackage;use_NetCoMi_pearson_spearman = TRUEinvokenetConstructfunction ofNetCoMipackage- 'spearman'
Spearman correlation; other details are same with the 'pearson' option
- 'sparcc'
SparCC algorithm (Friedman & Alm, PLoS Comp Biol, 2012, <doi:10.1371/journal.pcbi.1002687>); use NetCoMi package when
use_sparcc_method = "NetCoMi"; useSpiecEasipackage whenuse_sparcc_method = "SpiecEasi"and requireSpiecEasito be installed from Github (https://github.com/zdk123/SpiecEasi)- 'bicor'
Calculate biweight midcorrelation efficiently for matrices based on
WGCNA::bicorfunction; This option can invokenetConstructfunction ofNetCoMipackage; Make sureWGCNAandNetCoMipackages are both installed- 'cclasso'
Correlation inference of Composition data through Lasso method based on
netConstructfunction ofNetCoMipackage; for details, seeNetCoMi::cclassofunction- 'ccrepe'
Calculates compositionality-corrected p-values and q-values for compositional data using an arbitrary distance metric based on
NetCoMi::netConstructfunction; also seeNetCoMi::ccrepefunction
use_WGCNA_pearson_spearmandefault FALSE; whether use WGCNA package to calculate correlation when
cor_method= "pearson" or "spearman".use_NetCoMi_pearson_spearmandefault FALSE; whether use NetCoMi package to calculate correlation when
cor_method= "pearson" or "spearman". The important difference between NetCoMi and others is the features of zero handling and data normalization; See <doi: 10.1093/bib/bbaa290>.use_sparcc_methoddefault
c("NetCoMi", "SpiecEasi")[1]; useNetCoMipackage orSpiecEasipackage to perform SparCC whencor_method = "sparcc".taxa_leveldefault "OTU"; taxonomic rank; 'OTU' denotes using feature abundance table; other available options should be one of the colnames of
tax_tableof input dataset.filter_thresdefault 0; the relative abundance threshold.
nThreadsdefault 1; the CPU thread number; available when
use_WGCNA_pearson_spearman = TRUEoruse_sparcc_method = "SpiecEasi".SparCC_simu_numdefault 100; SparCC simulation number for bootstrap when
use_sparcc_method = "SpiecEasi".env_colsdefault NULL; numeric or character vector to select the column names of environmental data in dataset$sample_table; the environmental data can be used in the correlation network (as the nodes) or
FlashWeavenetwork.add_datadefault NULL; provide environmental variable table additionally instead of
env_colsparameter; rownames must be sample names....parameters pass to
NetCoMi::netConstructfor other operations, such as zero handling and/or data normalization when cor_method and other parameters refer toNetCoMipackage.
Returns
res_cor_p list with the correlation (association) matrix and p value matrix. Note that when cor_method and other parameters
refer to NetCoMi package, the p value table are all zero as the significant associations have been selected.
Examples
\donttest{
data(dataset)
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
# for non-correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = NULL)
}
Method cal_network()
Construct network based on the igraph package or SpiecEasi package or julia FlashWeave package or beemStatic package.
Usage
trans_network$cal_network(
network_method = c("COR", "SpiecEasi", "gcoda", "FlashWeave", "beemStatic")[1],
COR_p_thres = 0.01,
COR_p_adjust = "fdr",
COR_weight = TRUE,
COR_cut = 0.6,
COR_optimization = FALSE,
COR_optimization_low_high = c(0.01, 0.8),
COR_optimization_seq = 0.01,
SpiecEasi_method = "mb",
FlashWeave_tempdir = NULL,
FlashWeave_meta_data = FALSE,
FlashWeave_other_para = "alpha=0.01,sensitive=true,heterogeneous=true",
FlashWeave_gml = NULL,
beemStatic_t_strength = 0.001,
beemStatic_t_stab = 0.8,
add_taxa_name = "Phylum",
delete_unlinked_nodes = TRUE,
usename_rawtaxa_notOTU = FALSE,
...
)Arguments
network_methoddefault "COR"; "COR", "SpiecEasi", "gcoda", "FlashWeave" or "beemStatic";
network_method = NULLmeans skipping the network construction for the customized use. The option details:- 'COR'
correlation-based network; use the correlation and p value matrices in
res_cor_plist stored in the object; See Deng et al. (2012) <doi:10.1186/1471-2105-13-113> for other details- 'SpiecEasi'
SpiecEasinetwork; relies on algorithms of sparse neighborhood and inverse covariance selection; belong to the category of conditional dependence and graphical models; see https://github.com/zdk123/SpiecEasi for installing the R package; see Kurtz et al. (2015) <doi:10.1371/journal.pcbi.1004226> for the algorithm details- 'gcoda'
hypothesize the logistic normal distribution of microbiome data; use penalized maximum likelihood method to estimate the sparse structure of inverse covariance for latent normal variables to address the high dimensionality of the microbiome data; belong to the category of conditional dependence and graphical models; depend on the R
NetCoMipackage https://github.com/stefpeschel/NetCoMi; see FANG et al. (2017) <doi:10.1089/cmb.2017.0054> for the algorithm details- 'FlashWeave'
FlashWeavenetwork; Local-to-global learning framework; belong to the category of conditional dependence and graphical models; good performance on heterogenous datasets to find direct associations among taxa; see https://github.com/meringlab/FlashWeave.jl for installingjulialanguage andFlashWeavepackage; julia must be in the computer system env path, otherwise the program can not find it; see Tackmann et al. (2019) <doi:10.1016/j.cels.2019.08.002> for the algorithm details- 'beemStatic'
beemStaticnetwork; extend generalized Lotka-Volterra model to cases of cross-sectional datasets to infer interaction among taxa based on expectation-maximization algorithm; see https://github.com/CSB5/BEEM-static for installing the R package; see Li et al. (2021) <doi:10.1371/journal.pcbi.1009343> for the algorithm details
COR_p_thresdefault 0.01; the p value threshold for the correlation-based network.
COR_p_adjustdefault "fdr"; p value adjustment method, see
methodparameter ofp.adjustfunction for available options, in whichCOR_p_adjust = "none"means giving up the p value adjustment.COR_weightdefault TRUE; whether use correlation coefficient as the weight of edges; FALSE represents weight = 1 for all edges.
COR_cutdefault 0.6; correlation coefficient threshold for the correlation network.
COR_optimizationdefault FALSE; whether use random matrix theory (RMT) based method to determine the correlation coefficient; see https://doi.org/10.1186/1471-2105-13-113
COR_optimization_low_highdefault
c(0.01, 0.8); the low and high value threshold used for the RMT optimization; only useful when COR_optimization = TRUE.COR_optimization_seqdefault 0.01; the interval of correlation coefficient used for RMT optimization; only useful when COR_optimization = TRUE.
SpiecEasi_methoddefault "mb"; either 'glasso' or 'mb';see spiec.easi function in package SpiecEasi and https://github.com/zdk123/SpiecEasi.
FlashWeave_tempdirdefault NULL; The temporary directory used to save the temporary files for running FlashWeave; If not assigned, use the system user temp.
FlashWeave_meta_datadefault FALSE; whether use env data for the optimization, If TRUE, the function automatically find the
env_datain the object and generate a file for meta_data_path parameter of FlashWeave package.FlashWeave_other_paradefault
"alpha=0.01,sensitive=true,heterogeneous=true"; the parameters passed to julia FlashWeave package; user can change the parameters or add more according to FlashWeave help document; An exception is meta_data_path parameter as it is generated based on the data inside the object, see FlashWeave_meta_data parameter for the description.FlashWeave_gmldefault NULL; The path of FlashWeave output gml file for customized usage. This parameter is provided for some customized needs. For instance, it can be cumbersome to input bacterial and fungal abundances as separate input files for network analysis using the above parameter. Users can run FlashWeave on their own, and then provide the resulting gml file to this parameter, which allows them to continue using other functions.
beemStatic_t_strengthdefault 0.001; for network_method = "beemStatic"; the threshold used to limit the number of interactions (strength); same with the t.strength parameter in showInteraction function of beemStatic package.
beemStatic_t_stabdefault 0.8; for network_method = "beemStatic"; the threshold used to limit the number of interactions (stability); same with the t.stab parameter in showInteraction function of beemStatic package.
add_taxa_namedefault "Phylum"; one or more taxonomic rank name; used to add taxonomic rank name to network node properties.
delete_unlinked_nodesdefault TRUE; whether delete the nodes without any link.
usename_rawtaxa_notOTUdefault FALSE; whether use OTU name as representatives of taxa when
taxa_level != "OTU". DefaultFALSEmeans using taxonomic information oftaxa_levelinstead of OTU name....parameters pass to
SpiecEasi::spiec.easiwhennetwork_method = "SpiecEasi"; pass toNetCoMi::netConstructwhennetwork_method = "gcoda"; pass tobeemStatic::func.EMwhennetwork_method = "beemStatic".
Returns
res_network stored in object.
Examples
\dontrun{
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.001)
t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6)
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003)
t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005)
t1$cal_network(network_method = "beemStatic")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001)
t1$cal_network(network_method = "FlashWeave")
}
Method cal_module()
Calculate network modules and add module names to the network node properties.
Usage
trans_network$cal_module( method = "cluster_fast_greedy", module_name_prefix = "M" )
Arguments
methoddefault "cluster_fast_greedy"; the method used to find the optimal community structure of a graph; the following are available functions (options) from igraph package:
"cluster_fast_greedy","cluster_walktrap","cluster_edge_betweenness",
"cluster_infomap","cluster_label_prop","cluster_leading_eigen",
"cluster_louvain","cluster_spinglass","cluster_optimal".
For the details of these functions, please see the help document, such ashelp(cluster_fast_greedy); Note that the default"cluster_fast_greedy"method can not be applied to directed network. If directed network is provided, the function can automatically switch the default method from"cluster_fast_greedy"to"cluster_walktrap".module_name_prefixdefault "M"; the prefix of module names; module names are made of the module_name_prefix and numbers; numbers are assigned according to the sorting result of node numbers in modules with decreasing trend.
Returns
res_network with modules, stored in object.
Examples
\donttest{
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6)
t1$cal_module(method = "cluster_fast_greedy")
}
Method save_network()
Save network as gexf style, which can be opened by Gephi (https://gephi.org/).
Usage
trans_network$save_network(filepath = "network.gexf", ...)
Arguments
filepathdefault "network.gexf"; file path to save the network.
...parameters pass to
gexffunction of rgexf package except fornodes,edges,edgesLabel,edgesWeight,nodesAtt,edgesAttandmeta.
Returns
None
Examples
\dontrun{
t1$save_network(filepath = "network.gexf")
}
Method cal_network_attr()
Calculate network properties.
Usage
trans_network$cal_network_attr()
Returns
res_network_attr stored in object.
Examples
\donttest{
t1$cal_network_attr()
}
Method get_node_table()
Get the node property table. The properties include the node names, modules allocation, degree, betweenness, abundance, taxonomy, within-module connectivity (zi) and among-module connectivity (Pi) <doi:10.1186/1471-2105-13-113; 10.1016/j.geoderma.2022.115866>.
Usage
trans_network$get_node_table(node_roles = TRUE)
Arguments
node_rolesdefault TRUE; whether calculate the node roles <doi:10.1038/nature03288; 10.1186/1471-2105-13-113>. The role of node i is characterized by its within-module connectivity (zi) and among-module connectivity (Pi) as follows
z_i = \dfrac{k_{ib} - \bar{k_b}}{\sigma_{k_b}}P_i = 1 - \displaystyle\sum_{c=1}^{N_M} \biggl(\frac{k_{ic}}{k_i}\biggr)^2where
k_{ib}is the number of links of nodeito other nodes in its moduleb,\bar{k_b}and\sigma_{k_b}are the average and standard deviation of within-module connectivity, respectively over all the nodes in moduleb,k_iis the number of links of nodeiin the whole network,k_{ic}is the number of links from nodeito nodes in modulec, andN_Mis the number of modules in the network.
Returns
res_node_table in object; Abundance expressed as a percentage;
betweenness_centrality: betweenness centrality; betweenness_centrality: closeness centrality; eigenvector_centrality: eigenvector centrality;
z: within-module connectivity; p: among-module connectivity.
Examples
\donttest{
t1$get_node_table(node_roles = TRUE)
}
Method get_edge_table()
Get the edge property table, including connected nodes, label and weight.
Usage
trans_network$get_edge_table()
Returns
res_edge_table in object.
Examples
\donttest{
t1$get_edge_table()
}
Method get_adjacency_matrix()
Get the adjacency matrix from the network graph.
Usage
trans_network$get_adjacency_matrix(...)
Arguments
...parameters passed to as_adjacency_matrix function of
igraphpackage.
Returns
res_adjacency_matrix in object.
Examples
\donttest{
t1$get_adjacency_matrix(attr = "weight")
}
Method plot_network()
Plot the network based on a series of methods from other packages, such as igraph, ggraph and networkD3.
The networkD3 package provides dynamic network. It is especially useful for a glimpse of the whole network structure and finding
the interested nodes and edges in a large network. In contrast, the igraph and ggraph methods are suitable for relatively small network.
Usage
trans_network$plot_network(
method = c("igraph", "ggraph", "networkD3")[1],
node_label = "name",
node_color = NULL,
ggraph_layout = "fr",
ggraph_node_size = 2,
ggraph_node_text = TRUE,
ggraph_text_color = NULL,
ggraph_text_size = 3,
networkD3_node_legend = TRUE,
networkD3_zoom = TRUE,
...
)Arguments
methoddefault "igraph"; The available options:
- 'igraph'
call
plot.igraphfunction inigraphpackage for a static network; see plot.igraph for the parameters- 'ggraph'
call
ggraphfunction inggraphpackage for a static network- 'networkD3'
use forceNetwork function in
networkD3package for a dynamic network; see forceNetwork function for the parameters
node_labeldefault "name"; node label shown in the plot for
method = "ggraph"ormethod = "networkD3"; Please see the column names of object$res_node_table, which is the returned table of function object$get_node_table; User can select other column names in res_node_table.node_colordefault NULL; node color assignment for
method = "ggraph"ormethod = "networkD3"; Select a column name ofobject$res_node_table, such as "module".ggraph_layoutdefault "fr"; for
method = "ggraph"; seelayoutparameter ofcreate_layoutfunction inggraphpackage.ggraph_node_sizedefault 2; for
method = "ggraph"; the node size.ggraph_node_textdefault TRUE; for
method = "ggraph"; whether show the label text of nodes.ggraph_text_colordefault NULL; for
method = "ggraph"; a column name of object$res_node_table used to assign label text colors.ggraph_text_sizedefault 3; for
method = "ggraph"; the node label text size.networkD3_node_legenddefault TRUE; used for
method = "networkD3"; logical value to enable node colour legends; Please see the legend parameter in networkD3::forceNetwork function.networkD3_zoomdefault TRUE; used for
method = "networkD3"; logical value to enable (TRUE) or disable (FALSE) zooming; Please see the zoom parameter in networkD3::forceNetwork function....parameters passed to
plot.igraphfunction whenmethod = "igraph"or forceNetwork function whenmethod = "networkD3".
Returns
network plot.
Examples
\donttest{
t1$plot_network(method = "igraph", layout = layout_with_kk)
t1$plot_network(method = "ggraph", node_color = "module")
t1$plot_network(method = "networkD3", node_color = "module")
}
Method cal_eigen()
Calculate eigengenes of modules, i.e. the first principal component based on PCA analysis, and the percentage of variance <doi:10.1186/1471-2105-13-113>.
Usage
trans_network$cal_eigen()
Returns
res_eigen and res_eigen_expla in object.
Examples
\donttest{
t1$cal_eigen()
}
Method plot_taxa_roles()
Plot the roles or metrics of nodes based on the res_node_table data (coming from function get_node_table) stored in the object.
Usage
trans_network$plot_taxa_roles(
use_type = c(1, 2)[1],
roles_color_background = FALSE,
roles_color_values = NULL,
add_label = FALSE,
add_label_group = c("Network hubs", "Module hubs", "Connectors"),
add_label_text = "name",
label_text_size = 4,
label_text_color = "grey50",
label_text_italic = FALSE,
label_text_parse = FALSE,
plot_module = FALSE,
x_lim = c(0, 1),
use_level = "Phylum",
show_value = c("z", "p"),
show_number = 1:10,
plot_color = "Phylum",
plot_shape = "taxa_roles",
plot_size = "Abundance",
color_values = RColorBrewer::brewer.pal(12, "Paired"),
shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
...
)Arguments
use_typedefault 1; 1 or 2; 1 represents taxa roles plot (node roles include Module hubs, Network hubs, Connectors and Peripherals <doi:10.1038/nature03288; 10.1186/1471-2105-13-113>). The 'p' column (Pi, among-module connectivity) in
res_node_tabletable is used in x-axis. The 'z' column (Zi, within-module connectivity) is used in y-axis; 2 represents the layered plot with taxa as x axis and the index (e.g., Zi and Pi) as y axis. Please refer tores_node_tabledata stored in the object for the detailed information.roles_color_backgrounddefault FALSE; for use_type=1; TRUE: use background colors for each area; FALSE: use classic point colors.
roles_color_valuesdefault NULL; for use_type=1; color palette for background or points.
add_labeldefault FALSE; for use_type = 1; whether add labels for the points.
add_label_groupdefault c("Network hubs", "Module hubs", "Connectors"); If
add_label = TRUE, which part intaxa_rolescolumn is used to show labels; character vectors.add_label_textdefault "name"; If add_label = TRUE; which column of object$res_node_table is used to label the text.
label_text_sizedefault 4; The text size of the label.
label_text_colordefault "grey50"; The text color of the label.
label_text_italicdefault FALSE; whether use italic style for the label text.
label_text_parsedefault FALSE; whether parse the label text. See the parse parameter in
ggrepel::geom_text_repelfunction.plot_moduledefault FALSE; for use_type=1; whether plot the modules information.
x_limdefault c(0, 1); for use_type=1; x axis range when roles_color_background = FALSE.
use_leveldefault "Phylum"; for use_type=2; used taxonomic level in x axis.
show_valuedefault c("z", "p"); for use_type=2; indexes used in y axis. Please see
res_node_tablein the object for other available indexes.show_numberdefault 1:10; for use_type=2; showed number in x axis, sorting according to the nodes number.
plot_colordefault "Phylum"; for use_type=2; variable for color.
plot_shapedefault "taxa_roles"; for use_type=2; variable for shape.
plot_sizedefault "Abundance"; for use_type=2; used for point size; a fixed number (e.g. 5) is also acceptable.
color_valuesdefault RColorBrewer::brewer.pal(12, "Paired"); for use_type=2; color vector.
shape_valuesdefault c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); for use_type=2; shape vector, see ggplot2 tutorial for the shape meaning.
...parameters pass to
geom_pointfunction of ggplot2 package.
Returns
ggplot.
Examples
\donttest{
t1$plot_taxa_roles(roles_color_background = FALSE)
}
Method subset_network()
Subset of the network.
Usage
trans_network$subset_network( node = NULL, edge = NULL, rm_single = TRUE, node_alledges = FALSE, return_igraph = TRUE )
Arguments
nodedefault NULL; provide the node names that will be used in the sub-network.
edgedefault NULL; provide the edge label or numbers that need to be remained. For the edge label, it should must be "+" or "-". For the numbers, they should fall within the range of rows in
res_edge_tableof the object.rm_singledefault TRUE; whether remove the nodes without any edge in the sub-network. So this function can also be used to remove the nodes withou any edge when node and edge are both NULL.
node_alledgesdefault FALSE; whether remain the nodes and edges that related to the nodes provided in
nodeparameter. When this parameter is set toTRUE, the network will filter based on edges rather than directly on nodes. The logic is that if at least one of the two nodes connected by an edge is included in the nodes provided by the node parameter, the edge will be retained. Otherwise, it will be filtered out. When this parameter is set toFALSE, the network will filter directly based on the node parameter. Any nodes not included in the node parameter will be filtered out.return_igraphdefault TRUE; whether return the network with igraph format. If FALSE, return
trans_networkobject.
Returns
a new network
Examples
\donttest{
t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>%
rownames, rm_single = TRUE)
# return a sub network that contains all nodes of module M1
}
Method cal_powerlaw()
Fit degrees to a power law distribution. First, perform a bootstrapping hypothesis test to determine whether degrees follow a power law distribution. If the distribution follows power law, then fit degrees to power law distribution and return the parameters.
Usage
trans_network$cal_powerlaw(...)
Arguments
...parameters pass to bootstrap_p function in poweRlaw package.
Returns
res_powerlaw_p and res_powerlaw_fit; see poweRlaw::bootstrap_p function for the bootstrapping p value details;
see igraph::fit_power_law function for the power law fit return details.
Examples
\donttest{
t1$cal_powerlaw()
}
Method cal_sum_links()
This function is used to sum the links number from one taxa to another or in the same taxa, for example, at Phylum level. This is very useful to fast see how many nodes are connected between different taxa or within the taxa.
Usage
trans_network$cal_sum_links(taxa_level = "Phylum")
Arguments
taxa_leveldefault "Phylum"; taxonomic rank.
Returns
res_sum_links_pos and res_sum_links_neg in object.
Examples
\donttest{
t1$cal_sum_links(taxa_level = "Phylum")
}
Method plot_sum_links()
Plot the summed linkages among taxa.
Usage
trans_network$plot_sum_links(
plot_pos = TRUE,
plot_num = NULL,
color_values = RColorBrewer::brewer.pal(8, "Dark2"),
method = c("chorddiag", "circlize")[1],
...
)Arguments
plot_posdefault TRUE; If TRUE, plot the summed positive linkages; If FALSE, plot the summed negative linkages.
plot_numdefault NULL; number of taxa presented in the plot.
color_valuesdefault RColorBrewer::brewer.pal(8, "Dark2"); colors palette for taxa.
methoddefault c("chorddiag", "circlize")[1]; chorddiag package <https://github.com/mattflor/chorddiag> or circlize package.
...pass to
chorddiag::chorddiagfunction whenmethod = "chorddiag"orcirclize::chordDiagramfunction whenmethod = "circlize". Note that forcirclize::chordDiagramfunction,keep.diagonal,symmetricandself.linkparameters have been fixed to fit the input data.
Returns
please see the invoked function.
Examples
\dontrun{
test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10)
test1$plot_sum_links(method = "circlize", transparency = 0.2,
annotationTrackHeight = circlize::mm_h(c(5, 5)))
}
Method random_network()
Generate random networks, compare them with the empirical network and get the p value of topological properties.
The generation of random graph is based on the erdos.renyi.game function of igraph package.
The numbers of vertices and edges in the random graph are same with the empirical network stored in the object.
Usage
trans_network$random_network(runs = 100, output_sim = FALSE)
Arguments
runsdefault 100; simulation number of random network.
output_simdefault FALSE; whether output each simulated network result.
Returns
a data.frame with the following components:
ObservedTopological properties of empirical network
Mean_simMean of properties of simulated networks
SD_simSD of properties of simulated networks
p_valueSignificance, i.e. p values
When output_sim = TRUE, the columns from the five to the last are each simulated result.
Examples
\dontrun{
t1$random_network(runs = 100)
}
Method trans_comm()
Transform classifed features to community-like microtable object for further analysis, such as module-taxa table.
Usage
trans_network$trans_comm(use_col = "module", abundance = TRUE)
Arguments
use_coldefault "module"; which column to use as the 'community'; must be one of the name of res_node_table from function
get_node_table.abundancedefault TRUE; whether sum abundance of taxa. TRUE: sum the abundance for a taxon across all samples; FALSE: sum the frequency for a taxon across all samples.
Returns
a new microtable class.
Examples
\donttest{
t2 <- t1$trans_comm(use_col = "module")
}
Method print()
Print the trans_network object.
Usage
trans_network$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_network$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_network$new`
## ------------------------------------------------
data(dataset)
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
# for non-correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = NULL)
## ------------------------------------------------
## Method `trans_network$cal_network`
## ------------------------------------------------
## Not run:
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.001)
t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6)
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003)
t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005)
t1$cal_network(network_method = "beemStatic")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001)
t1$cal_network(network_method = "FlashWeave")
## End(Not run)
## ------------------------------------------------
## Method `trans_network$cal_module`
## ------------------------------------------------
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson",
taxa_level = "OTU", filter_thres = 0.0002)
t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6)
t1$cal_module(method = "cluster_fast_greedy")
## ------------------------------------------------
## Method `trans_network$save_network`
## ------------------------------------------------
## Not run:
t1$save_network(filepath = "network.gexf")
## End(Not run)
## ------------------------------------------------
## Method `trans_network$cal_network_attr`
## ------------------------------------------------
t1$cal_network_attr()
## ------------------------------------------------
## Method `trans_network$get_node_table`
## ------------------------------------------------
t1$get_node_table(node_roles = TRUE)
## ------------------------------------------------
## Method `trans_network$get_edge_table`
## ------------------------------------------------
t1$get_edge_table()
## ------------------------------------------------
## Method `trans_network$get_adjacency_matrix`
## ------------------------------------------------
t1$get_adjacency_matrix(attr = "weight")
## ------------------------------------------------
## Method `trans_network$plot_network`
## ------------------------------------------------
t1$plot_network(method = "igraph", layout = layout_with_kk)
t1$plot_network(method = "ggraph", node_color = "module")
t1$plot_network(method = "networkD3", node_color = "module")
## ------------------------------------------------
## Method `trans_network$cal_eigen`
## ------------------------------------------------
t1$cal_eigen()
## ------------------------------------------------
## Method `trans_network$plot_taxa_roles`
## ------------------------------------------------
t1$plot_taxa_roles(roles_color_background = FALSE)
## ------------------------------------------------
## Method `trans_network$subset_network`
## ------------------------------------------------
t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>%
rownames, rm_single = TRUE)
# return a sub network that contains all nodes of module M1
## ------------------------------------------------
## Method `trans_network$cal_powerlaw`
## ------------------------------------------------
t1$cal_powerlaw()
## ------------------------------------------------
## Method `trans_network$cal_sum_links`
## ------------------------------------------------
t1$cal_sum_links(taxa_level = "Phylum")
## ------------------------------------------------
## Method `trans_network$plot_sum_links`
## ------------------------------------------------
## Not run:
test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10)
test1$plot_sum_links(method = "circlize", transparency = 0.2,
annotationTrackHeight = circlize::mm_h(c(5, 5)))
## End(Not run)
## ------------------------------------------------
## Method `trans_network$random_network`
## ------------------------------------------------
## Not run:
t1$random_network(runs = 100)
## End(Not run)
## ------------------------------------------------
## Method `trans_network$trans_comm`
## ------------------------------------------------
t2 <- t1$trans_comm(use_col = "module")
Feature abundance normalization/transformation.
Description
Feature abundance normalization/transformation for a microtable object or data.frame object.
Methods
Public methods
Method new()
Get a transposed abundance table if the input is microtable object. In the table, rows are samples, and columns are features. This can make the further operations same with the traditional ecological methods.
Usage
trans_norm$new(dataset = NULL)
Arguments
datasetthe
microtableobject ordata.frameobject. If it isdata.frameobject, please make sure that rows are samples, and columns are features.
Returns
data_table, stored in the object.
Examples
library(microeco) data(dataset) t1 <- trans_norm$new(dataset = dataset)
Method norm()
Normalization/transformation methods.
Usage
trans_norm$norm( method = "rarefy", sample.size = NULL, rngseed = 123, replace = TRUE, pseudocount = 1, intersect.no = 10, ct.min = 1, condition = NULL, MARGIN = NULL, logbase = 2, ... )
Arguments
methoddefault "rarefy"; See the following available options.
Methods for normalization:-
"rarefy": classic rarefaction based on R sample function. -
"SRS": scaling with ranked subsampling method based on the SRS package provided by Lukas Beule and Petr Karlovsky (2020) <doi:10.7717/peerj.9593>. -
"clr": Centered log-ratio normalization <ISBN:978-0-412-28060-3> <doi: 10.3389/fmicb.2017.02224>. It is defined:clr_{ki} = \log\frac{x_{ki}}{g(x_i)}where
x_{ki}is the abundance ofkth feature in samplei,g(x_i)is the geometric mean of abundances for samplei. A pseudocount need to be added to deal with the zero. For more information, please see the 'clr' method indecostandfunction of vegan package. -
"rclr": Robust centered log-ratio normalization <doi:10.1128/msystems.00016-19>. It is defined:rclr_{ki} = \log\frac{x_{ki}}{g(x_i > 0)}where
x_{ki}is the abundance ofkth feature in samplei,g(x_i > 0)is the geometric mean of abundances (> 0) for samplei. In rclr, zero values are kept as zeroes, and not taken into account. -
"GMPR": Geometric mean of pairwise ratios <doi: 10.7717/peerj.4600>. For a given samplei, the size factors_iis defined:s_i = \biggl( {\displaystyle\prod_{j=1}^{n} Median_{k|c_{ki}c_{kj} \ne 0} \lbrace \dfrac{c_{ki}}{c_{kj}} \rbrace} \biggr) ^{1/n}where
kdenotes all the features, andndenotes all the samples. For samplei,GMPR = \frac{x_{i}}{s_i}, wherex_iis the feature abundances of samplei. -
"CSS": Cumulative sum scaling normalization based on themetagenomeSeqpackage <doi:10.1038/nmeth.2658>. For a given samplej, the scaling factors_{j}^{l}is defined:s_{j}^{l} = {\displaystyle\sum_{i|c_{ij} \leqslant q_{j}^{l}} c_{ij}}where
q_{j}^{l}is thelth quantile of samplej, that is, in samplejthere arelfeatures with counts smaller thanq_{j}^{l}.c_{ij}denotes the count (abundance) of feature i in samplej. Forl= 0.95m(feature number),q_{j}^{l}corresponds to the 95th percentile of the count distribution for samplej. Normalized counts\tilde{c_{ij}} = (\frac{c_{ij}}{s_{j}^{l}})(N), whereNis an appropriately chosen normalization constant. -
"TSS": Total sum scaling. Abundance is divided by the sequencing depth. For a given samplej, normalized counts is defined:\tilde{c_{ij}} = \frac{c_{ij}}{\sum_{i=1}^{N_{j}} c_{ij}}where
c_{ij}is the counts of featureiin samplej, andN_{j}is the feature number of samplej. -
"eBay": Empirical Bayes approach to normalization <10.1186/s12859-020-03552-z>. The implemented method is not tree-related. In the output, the sum of each sample is 1. -
"TMM": Trimmed mean of M-values method based on thenormLibSizesfunction ofedgeRpackage <doi: 10.1186/gb-2010-11-3-r25>. -
"DESeq2": Median ratio of gene counts relative to geometric mean per gene based on the DESeq function ofDESeq2package <doi: 10.1186/s13059-014-0550-8>. This option can invoke thetrans_diffclass and extract the normalized data from the original result. Note that eithergrouporformulashould be provided. The scaling factor is defined:s_{j} = Median_{i} \frac{c_{ij}}{\bigl( {\prod_{j=1}^{n} c_{ij}} \bigr) ^{1/n}}where
c_{ij}is the counts of featureiin samplej, andnis the total sample number. -
"Wrench": Group-wise and sample-wise compositional bias factor <doi: 10.1186/s12864-018-5160-5>. Note that condition parameter is necesary to be passed toconditionparameter inwrenchfunction of Wrench package. As the input data must be microtable object, so the input condition parameter can be a column name ofsample_table. The scaling factor is defined:s_{j} = \frac{1}{p} \sum_{ij} W_{ij} \frac{X_{ij}}{\overline{X_{i}}}where
X_{ij}represents the relative abundance (proportion) for featureiin samplej,\overline{X_{i}}is the average proportion of featureiacross the dataset,W_{ij}represents a weight specific to each technique, andpis the feature number in sample. -
"RLE": Relative log expression.
Methods based on
decostandfunction of vegan package:-
"total": divide by margin total (default MARGIN = 1, i.e. rows - samples). -
"max": divide by margin maximum (default MARGIN = 2, i.e. columns - features). -
"normalize": make margin sum of squares equal to one (default MARGIN = 1). -
"range": standardize values into range 0...1 (default MARGIN = 2). If all values are constant, they will be transformed to 0. -
"standardize": scale x to zero mean and unit variance (default MARGIN = 2). -
"pa": scale x to presence/absence scale (0/1). -
"log": logarithmic transformation.
Other methods for transformation:
-
"AST": Arc sine square root transformation.
-
sample.sizedefault NULL; libray size for rarefaction when method = "rarefy" or "SRS". If not provided, use the minimum number across all samples. For "SRS" method, this parameter is passed to
Cminparameter ofSRSfunction of SRS package.rngseeddefault 123; random seed. Available when method = "rarefy" or "SRS".
replacedefault TRUE; see
samplefor the random sampling; Available whenmethod = "rarefy".pseudocountdefault 1; add pseudocount for those features with 0 abundance when
method = "clr".intersect.nodefault 10; the intersecting taxa number between paired sample for
method = "GMPR".ct.mindefault 1; the minimum number of counts required to calculate ratios for
method = "GMPR".conditiondefault NULL; Only available when
method = "Wrench". This parameter is passed to theconditionparameter ofwrenchfunction in Wrench package It must be a column name ofsample_tableor a vector with same length of samples.MARGINdefault NULL; 1 = samples, and 2 = features of abundance table; only available when method comes from
decostandfunction of vegan package. If MARGIN is NULL, use the default value in decostand function.logbasedefault 2; The logarithm base.
...parameters pass to
vegan::decostand, ormetagenomeSeq::cumNormwhen method = "CSS", oredgeR::normLibSizeswhen method = "TMM" or "RLE", ortrans_diffclass when method = "DESeq2", orwrenchfunction of Wrench package when method = "Wrench".
Returns
new microtable object or data.frame object.
Examples
newdataset <- t1$norm(method = "clr") newdataset <- t1$norm(method = "log")
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_norm$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_norm$new`
## ------------------------------------------------
library(microeco)
data(dataset)
t1 <- trans_norm$new(dataset = dataset)
## ------------------------------------------------
## Method `trans_norm$norm`
## ------------------------------------------------
newdataset <- t1$norm(method = "clr")
newdataset <- t1$norm(method = "log")
Create trans_nullmodel object for null model related analysis.
Description
This class is a wrapper for a series of null model related approaches, including the mantel correlogram analysis of phylogenetic signal, beta nearest taxon index (betaNTI), beta net relatedness index (betaNRI), NTI, NRI and RCbray (Raup–Crick Bray–Curtis) calculations. See <doi:10.1111/j.1600-0587.2010.06548.x; 10.1890/ES10-00117.1; 10.1038/ismej.2013.93; 10.1038/s41598-017-17736-w> for the algorithms and applications.
Methods
Public methods
Method new()
Usage
trans_nullmodel$new( dataset = NULL, filter_thres = 0, taxa_number = NULL, group = NULL, select_group = NULL, env_cols = NULL, add_data = NULL, complete_na = FALSE )
Arguments
datasetthe object of
microtableClass.filter_thresdefault 0; the relative abundance threshold.
taxa_numberdefault NULL; how many taxa the user want to keep, if provided, filter_thres parameter will be forcible invalid.
groupdefault NULL; which column name in sample_table is selected as the group for the following selection.
select_groupdefault NULL; one or more elements in
group, used to select samples.env_colsdefault NULL; number or name vector to select the environmental data in dataset$sample_table.
add_datadefault NULL; provide environmental data table additionally.
complete_nadefault FALSE; whether fill the NA in environmental data based on the method in mice package.
Returns
data_comm and data_tree in object.
Examples
data(dataset) data(env_data_16S) t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)
Method cal_mantel_corr()
Calculate mantel correlogram.
Usage
trans_nullmodel$cal_mantel_corr( use_env = NULL, break.pts = seq(0, 1, 0.02), cutoff = FALSE, ... )
Arguments
use_envdefault NULL; numeric or character vector to select env_data; if provide multiple variables or NULL, use PCA (principal component analysis) to reduce dimensionality.
break.ptsdefault seq(0, 1, 0.02); see break.pts parameter in
mantel.correlogofveganpackage.cutoffdefault FALSE; see cutoff parameter in
mantel.correlog....parameters pass to
mantel.correlogfunction in vegan package.
Returns
res_mantel_corr in object.
Examples
\dontrun{
t1$cal_mantel_corr(use_env = "pH")
}
Method plot_mantel_corr()
Plot mantel correlogram.
Usage
trans_nullmodel$plot_mantel_corr(point_shape = 22, point_size = 3)
Arguments
point_shapedefault 22; the number for selecting point shape type; see
ggplot2manual for the number meaning.point_sizedefault 3; the point size.
Returns
ggplot.
Examples
\dontrun{
t1$plot_mantel_corr()
}
Method cal_betampd()
Calculate betaMPD (mean pairwise distance). Same with picante::comdist function, but faster.
Usage
trans_nullmodel$cal_betampd(abundance.weighted = TRUE)
Arguments
abundance.weighteddefault TRUE; whether use abundance-weighted method.
Returns
res_betampd in object.
Examples
\donttest{
t1$cal_betampd(abundance.weighted = TRUE)
}
Method cal_betamntd()
Calculate betaMNTD (mean nearest taxon distance). Same with picante::comdistnt function, but faster.
Usage
trans_nullmodel$cal_betamntd( abundance.weighted = TRUE, exclude.conspecifics = FALSE, use_iCAMP = FALSE, use_iCAMP_force = TRUE, iCAMP_tempdir = NULL, ... )
Arguments
abundance.weighteddefault TRUE; whether use abundance-weighted method.
exclude.conspecificsdefault FALSE; see
exclude.conspecificsparameter incomdistntfunction ofpicantepackage.use_iCAMPdefault FALSE; whether use
bmntd.bigfunction ofiCAMPpackage to calculate betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.use_iCAMP_forcedefault FALSE; whether use
bmntd.bigfunction ofiCAMPpackage automatically when the feature number is large.iCAMP_tempdirdefault NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.
...paremeters pass to
iCAMP::pdist.bigfunction.
Returns
res_betamntd in object.
Examples
\donttest{
t1$cal_betamntd(abundance.weighted = TRUE)
}
Method cal_ses_betampd()
Calculate standardized effect size of betaMPD, i.e. beta net relatedness index (betaNRI).
Usage
trans_nullmodel$cal_ses_betampd(
runs = 1000,
null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",
"independentswap", "trialswap")[1],
abundance.weighted = TRUE,
iterations = 1000
)Arguments
runsdefault 1000; simulation runs.
null.modeldefault "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see
null.modelparameter ofses.mntdfunction inpicantepackage for the algorithm details.abundance.weighteddefault TRUE; whether use weighted abundance.
iterationsdefault 1000; iteration number for part null models to perform; see iterations parameter of
picante::randomizeMatrixfunction.
Returns
res_ses_betampd in object.
Examples
\dontrun{
# only run 50 times for the example; default 1000
t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE)
}
Method cal_ses_betamntd()
Calculate standardized effect size of betaMNTD, i.e. beta nearest taxon index (betaNTI).
Usage
trans_nullmodel$cal_ses_betamntd(
runs = 1000,
null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",
"independentswap", "trialswap")[1],
abundance.weighted = TRUE,
exclude.conspecifics = FALSE,
use_iCAMP = FALSE,
use_iCAMP_force = TRUE,
iCAMP_tempdir = NULL,
nworker = 2,
iterations = 1000
)Arguments
runsdefault 1000; simulation number of null model.
null.modeldefault "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see
null.modelparameter ofses.mntdfunction inpicantepackage for the algorithm details.abundance.weighteddefault TRUE; whether use abundance-weighted method.
exclude.conspecificsdefault FALSE; see
comdistntin picante package.use_iCAMPdefault FALSE; whether use bmntd.big function of iCAMP package to calculate betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.
use_iCAMP_forcedefault FALSE; whether to make use_iCAMP to be TRUE when the feature number is large.
iCAMP_tempdirdefault NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.
nworkerdefault 2; the CPU thread number.
iterationsdefault 1000; iteration number for part null models to perform; see iterations parameter of
picante::randomizeMatrixfunction.
Returns
res_ses_betamntd in object.
Examples
\dontrun{
# only run 50 times for the example; default 1000
t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE)
}
Method cal_rcbray()
Calculate Bray–Curtis-based Raup–Crick (RCbray) <doi: 10.1890/ES10-00117.1>.
Usage
trans_nullmodel$cal_rcbray( runs = 1000, verbose = TRUE, null.model = "independentswap" )
Arguments
runsdefault 1000; simulation runs.
verbosedefault TRUE; whether show the calculation process message.
null.modeldefault "independentswap"; see more available options in
randomizeMatrixfunction ofpicantepackage.
Returns
res_rcbray in object.
Examples
\dontrun{
# only run 50 times for the example; default 1000
t1$cal_rcbray(runs = 50)
}
Method cal_process()
Infer the ecological processes according to ses.betaMNTD (betaNTI)/ses.betaMPD (betaNRI) and rcbray.
Usage
trans_nullmodel$cal_process(use_betamntd = TRUE, group = NULL)
Arguments
use_betamntddefault TRUE; whether use ses.betaMNTD (betaNTI); if False, use ses.betaMPD (betaNRI).
groupdefault NULL; a column name in sample_table of microtable object. If provided, the analysis will be performed for each group instead of the whole.
Returns
res_process in object.
Examples
\dontrun{
t1$cal_process(use_betamntd = TRUE)
}
Method cal_NRI()
Calculates Nearest Relative Index (NRI), equivalent to -1 times the standardized effect size of MPD.
Usage
trans_nullmodel$cal_NRI( null.model = "taxa.labels", abundance.weighted = FALSE, runs = 999, ... )
Arguments
null.modeldefault "taxa.labels"; Null model to use; see
null.modelparameter inses.mpdfunction ofpicantepackage for available options.abundance.weighteddefault FALSE; Should mean nearest relative distances for each species be weighted by species abundance?
runsdefault 999; Number of randomizations.
...paremeters pass to ses.mpd function in picante package.
Returns
res_NRI in object, equivalent to -1 times ses.mpd.
Examples
\donttest{
# only run 50 times for the example; default 999
t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50)
}
Method cal_NTI()
Calculates Nearest Taxon Index (NTI), equivalent to -1 times the standardized effect size of MNTD.
Usage
trans_nullmodel$cal_NTI( null.model = "taxa.labels", abundance.weighted = FALSE, runs = 999, ... )
Arguments
null.modeldefault "taxa.labels"; Null model to use; see
null.modelparameter inses.mntdfunction ofpicantepackage for available options.abundance.weighteddefault FALSE; Should mean nearest taxon distances for each species be weighted by species abundance?
runsdefault 999; Number of randomizations.
...paremeters pass to
ses.mntdfunction inpicantepackage.
Returns
res_NTI in object, equivalent to -1 times ses.mntd.
Examples
\donttest{
# only run 50 times for the example; default 999
t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50)
}
Method cal_Cscore()
Calculates the (normalised) mean number of checkerboard combinations (C-score) using C.score function in bipartite package.
Usage
trans_nullmodel$cal_Cscore(by_group = NULL, ...)
Arguments
by_groupdefault NULL; one column name or number in sample_table; calculate C-score for different groups separately.
...paremeters pass to
bipartite::C.scorefunction.
Returns
vector.
Examples
\dontrun{
t1$cal_Cscore(normalise = FALSE)
t1$cal_Cscore(by_group = "Group", normalise = FALSE)
}
Method cal_NST()
Calculate normalized stochasticity ratio (NST) based on the NST package.
Usage
trans_nullmodel$cal_NST(method = "tNST", group, ...)
Arguments
methoddefault "tNST";
'tNST'or'pNST'. See the help document oftNSTorpNSTfunction inNSTpackage for more details.groupa colname of
sample_tablein microtable object; the function can select the data from sample_table to generate a one-column (n x 1) matrix and provide it to the group parameter oftNSTorpNSTfunction....paremeters pass to
NST::tNSTorNST::pNSTfunction; see the document of corresponding function for more details.
Returns
res_NST stored in the object.
Examples
\dontrun{
t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE)
}
Method cal_NST_test()
Test the significance of NST difference between each pair of groups.
Usage
trans_nullmodel$cal_NST_test(method = "nst.boot", ...)
Arguments
methoddefault "nst.boot"; "nst.boot" or "nst.panova"; see
NST::nst.bootfunction orNST::nst.panovafunction for the details....paremeters pass to NST::nst.boot when method = "nst.boot" or NST::nst.panova when method = "nst.panova".
Returns
list. See the Return part of NST::nst.boot function or NST::nst.panova function in NST package.
Examples
\dontrun{
t1$cal_NST_test()
}
Method cal_NST_convert()
Convert NST paired long format table to symmetric matrix form.
Usage
trans_nullmodel$cal_NST_convert(column = 10)
Arguments
columndefault 10; which column is selected for the conversion. See the columns of
res_NST$index.pairstored in the object.
Returns
symmetric matrix.
Examples
\dontrun{
t1$cal_NST_convert(column = 10)
}
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_nullmodel$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_nullmodel$new`
## ------------------------------------------------
data(dataset)
data(env_data_16S)
t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)
## ------------------------------------------------
## Method `trans_nullmodel$cal_mantel_corr`
## ------------------------------------------------
## Not run:
t1$cal_mantel_corr(use_env = "pH")
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$plot_mantel_corr`
## ------------------------------------------------
## Not run:
t1$plot_mantel_corr()
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_betampd`
## ------------------------------------------------
t1$cal_betampd(abundance.weighted = TRUE)
## ------------------------------------------------
## Method `trans_nullmodel$cal_betamntd`
## ------------------------------------------------
t1$cal_betamntd(abundance.weighted = TRUE)
## ------------------------------------------------
## Method `trans_nullmodel$cal_ses_betampd`
## ------------------------------------------------
## Not run:
# only run 50 times for the example; default 1000
t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_ses_betamntd`
## ------------------------------------------------
## Not run:
# only run 50 times for the example; default 1000
t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_rcbray`
## ------------------------------------------------
## Not run:
# only run 50 times for the example; default 1000
t1$cal_rcbray(runs = 50)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_process`
## ------------------------------------------------
## Not run:
t1$cal_process(use_betamntd = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NRI`
## ------------------------------------------------
# only run 50 times for the example; default 999
t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NTI`
## ------------------------------------------------
# only run 50 times for the example; default 999
t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50)
## ------------------------------------------------
## Method `trans_nullmodel$cal_Cscore`
## ------------------------------------------------
## Not run:
t1$cal_Cscore(normalise = FALSE)
t1$cal_Cscore(by_group = "Group", normalise = FALSE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NST`
## ------------------------------------------------
## Not run:
t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NST_test`
## ------------------------------------------------
## Not run:
t1$cal_NST_test()
## End(Not run)
## ------------------------------------------------
## Method `trans_nullmodel$cal_NST_convert`
## ------------------------------------------------
## Not run:
t1$cal_NST_convert(column = 10)
## End(Not run)
Create trans_venn object for the Venn diagram, petal plot and UpSet plot.
Description
This class is a wrapper for a series of intersection analysis related methods, including 2- to 5-way venn diagram, more than 5-way petal or UpSet plot and intersection transformations based on David et al. (2012) <doi:10.1128/AEM.01459-12>.
Methods
Public methods
Method new()
Usage
trans_venn$new(dataset, ratio = NULL, name_joint = "&")
Arguments
datasetthe object of
microtableclass or a matrix-like table (data.frame or matrix object). If dataset is a matrix-like table, features must be rows.ratiodefault NULL; NULL, "numratio" or "seqratio"; "numratio": calculate the percentage of feature number; "seqratio": calculate the percentage of feature abundance; NULL: no additional percentage.
name_jointdefault "&"; the joint mark for generating multi-sample names.
Returns
data_details and data_summary stored in the object.
Examples
\donttest{
data(dataset)
t1 <- dataset$merge_samples("Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")
}
Method plot_venn()
Plot venn diagram.
Usage
trans_venn$plot_venn( color_circle = RColorBrewer::brewer.pal(8, "Dark2"), fill_color = TRUE, text_size = 4.5, text_name_size = 6, text_name_position = NULL, alpha = 0.3, linesize = 1.1, petal_plot = FALSE, petal_color = "#BEAED4", petal_color_center = "#BEBADA", petal_a = 4, petal_r = 1, petal_use_lim = c(-12, 12), petal_center_size = 40, petal_move_xy = 4, petal_move_k = 2.3, petal_move_k_count = 1.3, petal_text_move = 40, other_text_show = NULL, other_text_position = c(2, 2), other_text_size = 5 )
Arguments
color_circledefault
RColorBrewer::brewer.pal(8, "Dark2"); color pallete.fill_colordefault TRUE; whether fill the area color.
text_sizedefault 4.5; text size in plot.
text_name_sizedefault 6; name size in plot.
text_name_positiondefault NULL; name position in plot.
alphadefault .3; alpha for transparency.
linesizedefault 1.1; cycle line size.
petal_plotdefault FALSE; whether use petal plot.
petal_colordefault "#BEAED4"; color of the petals; If petal_color only has one color value, all the petals will be assigned with this color value. If petal_color has multiple colors, and the number of color values is smaller than the petal number, the function can append more colors automatically with the color interpolation.
petal_color_centerdefault "#BEBADA"; color of the center in the petal plot.
petal_adefault 4; the length of the ellipse.
petal_rdefault 1; scaling up the size of the ellipse.
petal_use_limdefault c(-12, 12); the width of the plot.
petal_center_sizedefault 40; petal center circle size.
petal_move_xydefault 4; the distance of text to circle.
petal_move_kdefault 2.3; the distance of title to circle.
petal_move_k_countdefault 1.3; the distance of data text to circle.
petal_text_movedefault 40; the distance between two data text.
other_text_showdefault NULL; other characters used to show in the plot.
other_text_positiondefault c(1, 1); the text position for text in
other_text_show.other_text_sizedefault 5; the text size for text in
other_text_show.
Returns
ggplot.
Examples
\donttest{
t1$plot_venn()
}
Method plot_bar()
Plot the intersections using histogram, i.e. UpSet plot. Especially useful when samples > 5.
Usage
trans_venn$plot_bar( left_plot = TRUE, sort_samples = FALSE, up_y_title = "Intersection size", up_y_title_size = 15, up_y_text_size = 8, up_bar_fill = "grey70", up_bar_width = 0.9, bottom_y_text_size = 12, bottom_height = 1, bottom_point_size = 3, bottom_point_color = "black", bottom_background_fill = "grey95", bottom_background_alpha = 1, bottom_line_width = 0.5, bottom_line_colour = "black", left_width = 0.3, left_bar_fill = "grey70", left_bar_alpha = 1, left_bar_width = 0.9, left_x_text_size = 10, left_background_fill = "white", left_background_alpha = 1 )
Arguments
left_plotdefault TRUE; whether add the left bar plot to show the feature number of each sample.
sort_samplesdefault FALSE;
TRUEis used to sort samples according to the number of features in each sample.FALSEmeans the sample order is same with that in sample_table of the raw dataset.up_y_titledefault "Intersection set"; y axis title of upper plot.
up_y_title_sizedefault 15; y axis title size of upper plot.
up_y_text_sizedefault 4; y axis text size of upper plot.
up_bar_filldefault "grey70"; bar fill color of upper plot.
up_bar_widthdefault 0.9; bar width of upper plot.
bottom_y_text_sizedefault 12; y axis text size, i.e. sample name size, of bottom sample plot.
bottom_heightdefault 1; bottom plot height relative to the upper bar plot. 1 represents the height of bottom plot is same with the upper bar plot.
bottom_point_sizedefault 3; point size of bottom plot.
bottom_point_colordefault "black"; point color of bottom plot.
bottom_background_filldefault "grey95"; fill color for the striped background in the bottom sample plot. If the parameter length is 1, use "white" to distinguish the color stripes. If the parameter length is greater than 1, use all provided colors.
bottom_background_alphadefault 1; the color transparency for the parameter
bottom_background_fill.bottom_line_widthdefault 0.5; the line width in the bottom plot.
bottom_line_colourdefault "black"; the line color in the bottom plot.
left_widthdefault 0.3; left bar plot width relative to the right bottom plot.
left_bar_filldefault "grey70"; fill color for the left bar plot presenting feature number.
left_bar_alphadefault 1; the color transparency for the parameter
left_bar_fill.left_bar_widthdefault 0.9; bar width of left plot.
left_x_text_sizedefault 10; x axis text size of the left bar plot.
left_background_filldefault "white"; fill color for the striped background in the left plot. If the parameter length is 1, use "white" to distinguish the color stripes. If the parameter length is greater than 1, use all provided colors.
left_background_alphadefault 1; the color transparency for the parameter
left_background_fill.
Returns
a ggplot2 object.
Examples
\donttest{
t2 <- t1$plot_bar()
}
Method trans_comm()
Transform intersection result to community-like microtable object for further composition analysis.
Usage
trans_venn$trans_comm(use_frequency = TRUE)
Arguments
use_frequencydefault TRUE; whether only use OTUs occurrence frequency, i.e. presence/absence data; if FALSE, use abundance data.
Returns
a new microtable class.
Examples
\donttest{
t2 <- t1$trans_comm(use_frequency = TRUE)
}
Method print()
Print the trans_venn object.
Usage
trans_venn$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
trans_venn$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## ------------------------------------------------
## Method `trans_venn$new`
## ------------------------------------------------
data(dataset)
t1 <- dataset$merge_samples("Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")
## ------------------------------------------------
## Method `trans_venn$plot_venn`
## ------------------------------------------------
t1$plot_venn()
## ------------------------------------------------
## Method `trans_venn$plot_bar`
## ------------------------------------------------
t2 <- t1$plot_bar()
## ------------------------------------------------
## Method `trans_venn$trans_comm`
## ------------------------------------------------
t2 <- t1$trans_comm(use_frequency = TRUE)