The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
mimsy is a package designed to calculate dissolved gas concentrations of oxygen, nitrogen, and argon from Membrane Inlet Mass Spectrometer (MIMS) signal data. For more information on the gas solubility equations used in this package, please see the References section. No R expertise is required to use mimsy, and this guide is designed for novice R users.
If you find bugs in this software, or you would like to suggest new features, please let us know on the mimsy GitHub page.
Install mimsy from the CRAN repository and load into your R environment:
Alternatively, the latest in-development version of
mimsy
can be pulled from Github via:
The general structure for running mimsy is:
read.csv()
mimsy()
functionmimsy.save()
or
an RData file using save()
You’ll need to add some special columns to your data file before loading it into R. The easiest way to do this is to use a spreadsheet editor like Excel. We recommend saving a seperate copy of your raw data file for mimsy (add “_mimsy” to the file name) to prevent any accidents.
Click to download an example CSV file for single water bath MIMS setups (“one temperature setups”): Download data_oneTemp.csv
Click to download an example CSV file for dual water bath MIMS setups (“two temperature setups”): Download data_twoTemp.csv
CSV file format:
Columns:
read.csv()
# Load data into R
data <- read.csv(file = "data_twoTemp.csv", header = TRUE, stringsAsFactors = FALSE)
# Check it out
data
Type | Group | CollectionTemp | RunDate | Label | Index | Time | X28 | X32 | X40 | N2.Ar | O2.Ar | Notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Standard | 1 | 24.9 | 2/1/18 | NA | 3029 | 10:32:53 AM | 0 | 0 | 0 | 40.27659 | 19.29615 | Barometric pressure = 977.2 hPa |
Standard | 1 | 24.9 | 2/1/18 | NA | 3079 | 10:34:07 AM | 0 | 0 | 0 | 40.28539 | 19.29992 | |
Standard | 1 | 24.9 | 2/1/18 | NA | 3128 | 10:35:19 AM | 0 | 0 | 0 | 40.29580 | 19.30377 | |
Standard | 1 | 26.3 | 2/1/18 | NA | 3212 | 10:37:22 AM | 0 | 0 | 0 | 40.42873 | 19.31060 | |
Standard | 1 | 26.3 | 2/1/18 | NA | 3261 | 10:38:35 AM | 0 | 0 | 0 | 40.41858 | 19.30813 | |
Standard | 1 | 26.3 | 2/1/18 | NA | 3315 | 10:39:54 AM | 0 | 0 | 0 | 40.43270 | 19.30843 | |
Sample | 1 | 25.1 | 2/1/18 | Sample1 | 3455 | 10:43:20 AM | 0 | 0 | 0 | 40.46266 | 22.82152 | |
Sample | 1 | 25.1 | 2/1/18 | Sample2 | 3554 | 10:45:46 AM | 0 | 0 | 0 | 40.47978 | 22.88816 | |
Sample | 1 | 25.1 | 2/1/18 | Sample3 | 3620 | 10:47:23 AM | 0 | 0 | 0 | 40.47607 | 22.91647 | |
Sample | 1 | 26.1 | 2/1/18 | Sample4 | 3701 | 10:49:22 AM | 0 | 0 | 0 | 39.79033 | 22.77329 | |
Sample | 1 | 26.1 | 2/1/18 | Sample5 | 3792 | 10:51:36 AM | 0 | 0 | 0 | 39.87121 | 22.93365 | |
Sample | 1 | 26.1 | 2/1/18 | Sample6 | 3913 | 10:54:34 AM | 0 | 0 | 0 | 40.33485 | 22.85876 | |
Sample | 1 | 25.3 | 2/1/18 | Sample7 | 3975 | 10:56:05 AM | 0 | 0 | 0 | 40.44159 | 22.58631 | |
Sample | 1 | 25.3 | 2/1/18 | Sample8 | 4043 | 10:57:45 AM | 0 | 0 | 0 | 40.40981 | 22.88878 | |
Sample | 1 | 25.3 | 2/1/18 | Sample9 | 4121 | 10:59:40 AM | 0 | 0 | 0 | 40.28400 | 23.18026 | |
Sample | 1 | 24.9 | 2/1/18 | Sample10 | 4233 | 11:02:25 AM | 0 | 0 | 0 | 40.86557 | 19.27496 | |
Sample | 1 | 24.9 | 2/1/18 | Sample11 | 4327 | 11:04:43 AM | 0 | 0 | 0 | 40.90063 | 19.20336 | |
Sample | 1 | 24.9 | 2/1/18 | Sample12 | 4422 | 11:07:03 AM | 0 | 0 | 0 | 40.87803 | 19.17829 | |
Standard | 2 | 24.9 | 2/1/18 | NA | 4654 | 11:12:45 AM | 0 | 0 | 0 | 40.38071 | 19.34272 | |
Standard | 2 | 24.9 | 2/1/18 | NA | 4742 | 11:14:54 AM | 0 | 0 | 0 | 40.37351 | 19.34234 | |
Standard | 2 | 24.9 | 2/1/18 | NA | 4779 | 11:15:48 AM | 0 | 0 | 0 | 40.38127 | 19.34579 | |
Standard | 2 | 26.3 | 2/1/18 | NA | 4866 | 11:17:57 AM | 0 | 0 | 0 | 40.48250 | 19.34875 | |
Standard | 2 | 26.3 | 2/1/18 | NA | 4962 | 11:20:18 AM | 0 | 0 | 0 | 40.48784 | 19.34937 | |
Standard | 2 | 26.3 | 2/1/18 | NA | 5007 | 11:21:24 AM | 0 | 0 | 0 | 40.48557 | 19.34862 | |
Sample | 2 | 26.3 | 2/1/18 | Sample13 | 4516 | 11:09:21 AM | 0 | 0 | 0 | 40.80347 | 19.00344 | |
Sample | 2 | 26.3 | 2/1/18 | Sample14 | 5089 | 11:23:25 AM | 0 | 0 | 0 | 40.85389 | 19.24914 | |
Sample | 2 | 26.3 | 2/1/18 | Sample15 | 5179 | 11:25:37 AM | 0 | 0 | 0 | 40.82519 | 19.28765 | |
Sample | 2 | 25.7 | 2/1/18 | Sample16 | 5270 | 11:27:51 AM | 0 | 0 | 0 | 40.87712 | 18.98291 | |
Sample | 2 | 25.7 | 2/1/18 | Sample17 | 5370 | 11:30:18 AM | 0 | 0 | 0 | 40.82986 | 19.20466 | |
Sample | 2 | 25.7 | 2/1/18 | Sample18 | 5475 | 11:32:53 AM | 0 | 0 | 0 | 40.82610 | 19.27355 | |
Sample | 2 | 25.9 | 2/1/18 | Sample19 | 5668 | 11:37:37 AM | 0 | 0 | 0 | 40.29644 | 25.40370 | |
Sample | 2 | 25.9 | 2/1/18 | Sample20 | 5741 | 11:39:24 AM | 0 | 0 | 0 | 40.24260 | 25.56124 | |
Sample | 2 | 25.9 | 2/1/18 | Sample21 | 5972 | 11:45:04 AM | 0 | 0 | 0 | 40.36147 | 25.51976 | |
Sample | 2 | 25.2 | 2/1/18 | Sample22 | 6079 | 11:47:42 AM | 0 | 0 | 0 | 40.03570 | 26.81639 | |
Sample | 2 | 25.2 | 2/1/18 | Sample23 | 6192 | 11:50:28 AM | 0 | 0 | 0 | 40.15149 | 26.95080 | |
Sample | 2 | 25.2 | 2/1/18 | Sample24 | 6335 | 11:53:58 AM | 0 | 0 | 0 | 39.77960 | 27.15118 | |
Standard | 3 | 24.9 | 2/1/18 | NA | 6475 | 11:57:24 AM | 0 | 0 | 0 | 40.46484 | 19.63069 | |
Standard | 3 | 24.9 | 2/1/18 | NA | 6542 | 11:59:03 AM | 0 | 0 | 0 | 40.46932 | 19.53179 | |
Standard | 3 | 24.9 | 2/1/18 | NA | 6599 | 12:00:27 PM | 0 | 0 | 0 | 40.49352 | 19.50314 | |
Standard | 3 | 26.3 | 2/1/18 | NA | 6723 | 12:03:29 PM | 0 | 0 | 0 | 40.55150 | 19.45527 | |
Standard | 3 | 26.3 | 2/1/18 | NA | 6825 | 12:05:59 PM | 0 | 0 | 0 | 40.54939 | 19.42995 | |
Standard | 3 | 26.3 | 2/1/18 | NA | 6870 | 12:07:06 PM | 0 | 0 | 0 | 40.55973 | 19.42807 |
Don’t be worried that your “28”, “32”, and “40” columns are now “X28”, “X32”, and “X40”. As R doesn’t accept column names that start with a number, it added an “X” to these column names when the data was imported. Similarly, “N2/Ar” and “O2/Ar” have been automatically adjusted to “N2.Ar” and “O2.Ar”.
mimsy()
functionYou must specify the barometric pressure (as
baromet.press
) and its units in the function argument.
Units must be one of "atm"
, "hPa"
,
"psi"
, "bar"
, or "Torr"
. All
other inputs, such as background corrections or standard salinity, are
optional. Check out ?mimsy
for more information.
You’ll see that mimsy()
returns a list containing five
seperate dataframes (results
,
solubility.Concentrations
,
calibration.Factors
,
calibration.DriftCorrection
, and
results.full
). Check out ?mimsy() for more specific
information on those outputs and how they were calculated.
The summarized results includes the calculated gas concentrations for all samples:
CollectionTemp | Label | Notes | arSat.conc_uMol.kg | n2Sat.conc_uMol.kg | o2Sat.conc_uMol.kg | Ar_uMolL | N2Ar | O2Ar | N2_uMolL | O2_uMolL | N2_mgL | O2_mgL | Ar_mgL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | Sample1 | 12.09965 | 470.8931 | 256.0983 | 12.00882 | 39.04704 | 25.01304 | 472.4557 | 302.6491 | 13.22876 | 9.684772 | 0.4803527 | |
25.1 | Sample2 | 12.09965 | 470.8931 | 256.0983 | 11.97778 | 39.05838 | 25.08267 | 472.5929 | 303.4915 | 13.23260 | 9.711729 | 0.4791111 | |
25.1 | Sample3 | 12.09965 | 470.8931 | 256.0983 | 11.94339 | 39.05136 | 25.11142 | 472.5079 | 303.8394 | 13.23022 | 9.722862 | 0.4777357 | |
26.1 | Sample4 | 11.88145 | 463.3433 | 253.0292 | 11.59060 | 38.37769 | 25.09848 | 455.9827 | 298.2064 | 12.76751 | 9.542604 | 0.4636239 | |
26.1 | Sample5 | 11.88145 | 463.3433 | 253.0292 | 11.59887 | 38.45231 | 25.27225 | 456.8693 | 300.2711 | 12.79234 | 9.608674 | 0.4639547 | |
26.1 | Sample6 | 11.88145 | 463.3433 | 253.0292 | 11.77280 | 38.89491 | 25.18581 | 462.1280 | 299.2440 | 12.93958 | 9.575807 | 0.4709121 | |
25.3 | Sample7 | 12.05545 | 469.3628 | 255.4663 | 11.75798 | 38.99877 | 24.76680 | 470.1476 | 298.5748 | 13.16413 | 9.554393 | 0.4703192 | |
25.3 | Sample8 | 12.05545 | 469.3628 | 255.4663 | 11.84647 | 38.96478 | 25.09616 | 469.7378 | 302.5454 | 13.15266 | 9.681451 | 0.4738588 | |
25.3 | Sample9 | 12.05545 | 469.3628 | 255.4663 | 11.81299 | 38.83963 | 25.41305 | 468.2291 | 306.3657 | 13.11041 | 9.803702 | 0.4725195 | |
24.9 | Sample10 | 12.14415 | 472.4339 | 256.7397 | 11.85492 | 39.39490 | 21.07834 | 478.4175 | 255.9785 | 13.39569 | 8.191311 | 0.4741968 | |
24.9 | Sample11 | 12.14415 | 472.4339 | 256.7397 | 11.90533 | 39.42348 | 20.99730 | 478.7645 | 254.9943 | 13.40541 | 8.159818 | 0.4762130 | |
24.9 | Sample12 | 12.14415 | 472.4339 | 256.7397 | 11.95593 | 39.39640 | 20.96711 | 478.4356 | 254.6277 | 13.39620 | 8.148087 | 0.4782373 | |
26.3 | Sample13 | 11.83865 | 461.8634 | 252.4423 | 11.77680 | 39.32482 | 20.95014 | 465.5527 | 248.0213 | 13.03548 | 7.936681 | 0.4710718 | |
26.3 | Sample14 | 11.83865 | 461.8634 | 252.4423 | 11.88897 | 39.35255 | 21.19046 | 465.8809 | 250.8664 | 13.04467 | 8.027724 | 0.4755589 | |
26.3 | Sample15 | 11.83865 | 461.8634 | 252.4423 | 11.89373 | 39.32164 | 21.22807 | 465.5150 | 251.3116 | 13.03442 | 8.041970 | 0.4757490 | |
25.7 | Sample16 | 11.96789 | 466.3329 | 254.2297 | 11.86847 | 39.36071 | 20.79488 | 471.0646 | 248.8709 | 13.18981 | 7.963867 | 0.4747390 | |
25.7 | Sample17 | 11.96789 | 466.3329 | 254.2297 | 11.87436 | 39.31090 | 21.02942 | 470.4685 | 251.6778 | 13.17312 | 8.053691 | 0.4749745 | |
25.7 | Sample18 | 11.96789 | 466.3329 | 254.2297 | 11.88057 | 39.30274 | 21.09600 | 470.3709 | 252.4746 | 13.17039 | 8.079187 | 0.4752228 | |
25.9 | Sample19 | 11.92453 | 464.8331 | 253.6250 | 11.83255 | 38.78803 | 27.83127 | 462.5291 | 331.8749 | 12.95082 | 10.619997 | 0.4733021 | |
25.9 | Sample20 | 11.92453 | 464.8331 | 253.6250 | 11.83667 | 38.73328 | 27.99674 | 461.8763 | 333.8481 | 12.93254 | 10.683138 | 0.4734668 | |
25.9 | Sample21 | 11.92453 | 464.8331 | 253.6250 | 11.84976 | 38.83837 | 27.92871 | 463.1294 | 333.0369 | 12.96762 | 10.657180 | 0.4739903 | |
25.2 | Sample22 | 12.07751 | 470.1267 | 255.7812 | 11.75605 | 38.50567 | 29.14297 | 465.0527 | 351.9746 | 13.02148 | 11.263187 | 0.4702422 | |
25.2 | Sample23 | 12.07751 | 470.1267 | 255.7812 | 11.80474 | 38.61164 | 29.27172 | 466.3326 | 353.5296 | 13.05731 | 11.312947 | 0.4721895 | |
25.2 | Sample24 | 12.07751 | 470.1267 | 255.7812 | 11.64738 | 38.24725 | 29.46728 | 461.9316 | 355.8915 | 12.93409 | 11.388528 | 0.4658953 |
O2.conc_uMol.kg | N2.conc_uMol.kg | Ar.conc_uMol.kg | |
---|---|---|---|
24.9 deg C | 256.7397 | 472.4339 | 12.14415 |
26.3 deg C | 252.4423 | 461.8634 | 11.83865 |
Check out ?mimsy() for more specific information on the
results
, solubility.Concentrations
,
calibration.Factors
,
calibration.DriftCorrection
, and results.full
dataframes, including details on how they were calculated.
# Save output to an Excel workbook
mimsy.save(results, file = "results.xlsx")
# Save output to an RData file
save(results, file = "results.RData")
We don’t reccomend saving results dataframes to CSV files (although it is possible), as you’ll need multiple CSV’s to preserve all of the outputs, and that gets kind of messy. A good alternative is to save both an Excel workbook copy and an RData copy, that way all of your output is preserved every time.
You can load RData files back into R using
load("results.RData")
. Check out ?load()
for
more info.
# Install mimsy
install.packages("mimsy")
# Load mimsy
library(mimsy)
# Load data into R
data <- read.csv(file = "data.csv", header = TRUE, stringsAsFactors = FALSE)
# Run the mimsy function
results <- mimsy(data, baromet.press = 977.2, units = "hPa")
# Save the results
mimsy.save(results, file = "results.xlsx") # To Excel file
save(results, file = "results.RData") # To RData file
# Done! :)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.