The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
mirai provides an alternative communications backend for R. This functionality was developed to fulfil a request by R Core at R Project Sprint 2023.
A ‘miraiCluster’ is recognised as one of the official cluster types, and may be created by parallel::makeCluster(type = "MIRAI")
from R 4.5 onwards.
This function calls make_cluster()
, which may also be used to directly create a ‘miraiCluster’.
remote_config()
or ssh_config()
.Created clusters may be used for any function in the parallel
base package such as parallel::clusterApply()
or parallel::parLapply()
, or the load-balanced versions such as parallel::parLapplyLB()
.
library(parallel)
library(mirai)
cl <- makeCluster(6, type = "MIRAI")
cl
#> < miraiCluster | ID: `0` nodes: 6 active: TRUE >
parLapply(cl, iris, mean)
#> $Sepal.Length
#> [1] 5.843333
#>
#> $Sepal.Width
#> [1] 3.057333
#>
#> $Petal.Length
#> [1] 3.758
#>
#> $Petal.Width
#> [1] 1.199333
#>
#> $Species
#> [1] NA
status()
may be called on a ’miraiCluster` to query the number of connected nodes at any time.
status(cl)
#> $connections
#> [1] 6
#>
#> $daemons
#> [1] "ipc:///tmp/468d15baad12987297924d3a"
stopCluster(cl)
Making a cluster specifying ‘url’ without ‘remote’ causes the shell commands for manual deployment of nodes to be printed to the console.
cl <- make_cluster(n = 2, url = host_url())
#> Shell commands for deployment on nodes:
#>
#> [1]
#> Rscript -e 'mirai::daemon("tcp://192.168.2.179:49947",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,1353351353,-1043629786,-29560465,-1602291484,-248192363,-1183841710))'
#>
#> [2]
#> Rscript -e 'mirai::daemon("tcp://192.168.2.179:49947",dispatcher=FALSE,cleanup=FALSE,rs=c(10407,-440398556,800923107,1329159622,2121404046,1811662990,825393618))'
stop_cluster(cl)
A ‘miraiCluster’ may also be registered by doParallel
for use with the foreach
package.
Running some parallel examples for the foreach()
function:
library(doParallel)
#> Loading required package: foreach
#> Loading required package: iterators
library(foreach)
cl <- makeCluster(6, type = "MIRAI")
registerDoParallel(cl)
# normalize the rows of a matrix
m <- matrix(rnorm(9), 3, 3)
foreach(i = 1:nrow(m), .combine = rbind) %dopar%
(m[i, ] / mean(m[i, ]))
#> [,1] [,2] [,3]
#> result.1 1.101225 0.4266552 1.472120
#> result.2 -1.268963 1.0011693 3.267793
#> result.3 -10.306468 -20.4872993 33.793767
# simple parallel matrix multiply
a <- matrix(1:16, 4, 4)
b <- t(a)
foreach(b = iterators::iter(b, by='col'), .combine = cbind) %dopar%
(a %*% b)
#> [,1] [,2] [,3] [,4]
#> [1,] 276 304 332 360
#> [2,] 304 336 368 400
#> [3,] 332 368 404 440
#> [4,] 360 400 440 480
stopCluster(cl)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.