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calculate_bootstrap_ci

Calculate Bootstrap Confidence Intervals for R Estimates

Description

Generates bootstrap confidence intervals for reproduction number estimates by resampling the in-
cidence data multiple times and calculating quantiles of the resulting R distributions.


https://orcid.org/0000-0001-5419-7206
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Usage
calculate_bootstrap_ci(
incidence,
si_prob,
dates,
si_mean,
si_sd,
si_dist,
smoothing,
n_bootstrap,
conf_level
)
Arguments
incidence numeric vector; daily case counts
si_prob numeric matrix; serial interval probability matrix
dates vector; dates corresponding to incidence data
si_mean numeric; mean of the serial interval distribution
si_sd numeric; standard deviation of the serial interval distribution
si_dist character; distribution type, either "gamma" or "normal"
smoothing integer; window size for temporal smoothing
n_bootstrap integer; number of bootstrap samples to generate
conf_level numeric; confidence level (between O and 1)
Value

named list with confidence interval bounds:

e r_lower, r_upper: Confidence intervals for raw R estimates

e r_corrected_lower, r_corrected_upper: Confidence intervals for corrected R estimates

calculate_r_estimates Calculate Reproduction Number Estimates

Description

Implements the Wallinga-Lipsitch algorithm to estimate case reproduction numbers from incidence
data and serial interval probabilities. This function performs the likelihood calculations for retro-
spective reproduction number estimation.
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Usage
calculate_r_estimates(
incidence,
si_prob,
dates,
si_mean,
si_sd,
si_dist,
smoothing
)
Arguments
incidence numeric vector; daily case counts. Must be non-negative integers. Days with
zero cases will have R estimates of NA
si_prob numeric matrix; serial interval probability matrix from calculate_si_probability_matrix.
Element [i, j] represents the probability that case j infected case i
dates vector; dates corresponding to incidence data. Used for right-truncation correc-
tion calculations
si_mean numeric; mean of the serial interval distribution in days
si_sd numeric; standard deviation of the serial interval distribution in days
si_dist character; distribution type for serial interval, either "gamma" or "normal”
smoothing integer; window size for temporal smoothing (0 = no smoothing). When > 1,
applies centered moving average to reduce noise
Details

The algorithm calculates the probability that each earlier case infected each later case based on
their time difference and the serial interval distribution. These probabilities are then aggregated to
estimate the expected number of secondary cases generated by cases on each day.

The Wallinga-Lipsitch method works by:

1. Computing transmission likelihoods from earlier to later cases

2. Normalizing these likelihoods to create proper probabilities

3. Aggregating probabilities to estimate expected secondary cases per primary case
4. Applying right-truncation correction for cases near the observation end

The right-truncation correction accounts for the fact that cases near the end of the observation period
may have generated secondary cases that occur after data collection ended.

Value
named list with two numeric vectors of the same length as incidence:

* r: Raw case reproduction number estimates. Returns NA for days with zero cases or single-
case epidemics

* r_corrected: Estimates with right-truncation correction applied. Values > 10 are capped at
NA to avoid unrealistic estimates
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See Also

wallinga_lipsitch for the main user interface, calculate_si_probability_matrix for proba-
bility matrix creation, calculate_truncation_correction for correction details

calculate_si_probability_matrix
Calculate Serial Interval Probability Matrix

Description

Computes a matrix of transmission probabilities between all pairs of cases based on their time
differences and the specified serial interval distribution. Only considers epidemiologically plausible
transmission pairs (earlier to later cases).

Usage

calculate_si_probability_matrix(day_diffs, si_mean, si_sd, si_dist)

Arguments
day_diffs numeric matrix; matrix of day differences between each pair of cases, where
element [1i, j] represents days between case i and case j
si_mean numeric; mean of the serial interval distribution in days
si_sd numeric; standard deviation of the serial interval distribution in days
si_dist character; distribution type, either "gamma" or "normal"
Value

numeric matrix; matrix of transmission probabilities where element [i, j] represents the probabil-
ity that case j infected case i based on their time difference and the serial interval distribution

Examples

# Create sample day differences matrix
dates <- as.Date(c("2023-01-01", "2023-01-03", "2023-01-05"))
day_diffs <- create_day_diff_matrix(dates)

# Calculate probability matrix
prob_matrix <- calculate_si_probability_matrix(day_diffs, si_mean =7, si_sd =3, si_dist = "gamma")
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calculate_truncation_correction
Calculate Right-Truncation Correction Factors

Description
Computes correction factors to adjust reproduction number estimates for right-truncation bias. This

bias occurs because cases near the end of the observation period may have generated secondary
cases that are not yet observed.

Usage

calculate_truncation_correction(dates, si_mean, si_sd, si_dist)

Arguments
dates vector; dates corresponding to each case
si_mean numeric; mean of the serial interval distribution in days
si_sd numeric; standard deviation of the serial interval distribution in days
si_dist character; distribution type, either "gamma" or "normal"
Value

numeric vector; correction factors for each case. Values > 1 indicate upward adjustment needed.
Returns NA when correction would be unreliable (probability of observation <= 0.5)

Examples

# Calculate truncation correction for recent cases
case_dates <- seq(as.Date("2023-01-01"), as.Date("2023-01-20"), by = "day")
corrections <- calculate_truncation_correction(

case_dates, si_mean = 7, si_sd = 3, si_dist = "gamma”

)

# Show how correction increases for more recent cases
tail(corrections, 5)
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conv_tri_dist Convolution of the triangular distribution with the mixture component
density (continuous case)

Description

We split the folded normal distribution for Primary-Secondary, Primary-Tertiary and Primary-Quaternary
routes into two parts

e component 1: Co-Primary route

e component 2+3: Primary-Secondary route

e component 4+5: Primary-Tertiary route

» component 6+7: Primary-Quaternary route

Usage

conv_tri_dist(x, sigma = sd(x), r = x, mu = mean(x), route, quantity = "zero")
Arguments

X vector of index case to case intervals

sigma standard deviation of density distribution

r description??

mu mean of density distribution

route integer; between 1 and 7 and indicates the route of transmission.

quantity character; "zero", "lower", "upper"
Value

vector of density draws for each value of x

Examples

iccs <- 1:30
conv_tri_dist(x = iccs, route = 1)



create_day_diff_matrix
Create Day Difference Matrix

Description
Creates a symmetric matrix containing the time differences (in days) between all pairs of cases
based on their symptom onset dates.

Usage

create_day_diff_matrix(dates)

Arguments
dates vector; dates of symptom onset for each case. Can be Date objects or any format
coercible to dates
Value

numeric matrix; symmetric matrix where element [i,j] represents the number of days between
case i and case j (positive if i occurs after j)

Examples

# Create day difference matrix from onset dates

onset_dates <- as.Date(c("2023-01-01", "2023-01-04", "2023-01-07", "2023-01-10"))
day_differences <- create_day_diff_matrix(onset_dates)

print(day_differences)

fo Calculate f0 for Different Components

Description

This function calculates the value of fO based on the component, where the components represent
the transmission routes: Co-Primary (CP), Primary-Secondary (PS), Primary-Tertiary (PT), and
Primary-Quaternary (PQ). We split the PS, PT and PQ routes into two parts, such that

e component 1: CP route

e component 2+3: PS route

e component 4+5: PT route

* component 6+7: PQ route
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Usage
fo(x, mu, sigma, comp, dist = "normal”)
Arguments
X numeric; the value at which to evaluate the function.
mu numeric; the mean value.
sigma numeric; the standard deviation.
comp integer; the component number (1 to 7).
dist string; assumed distribution of the serial interval; takes "normal" or "gamma";
defaults to "normal”
Details

If the dist = gamma, then the mean (1) and standard deviation (sigma) are converted into the shape
(k) and scale (theta) parameters for the gamma distribution, such that the mean (¢ ) and variance
(0?) are given by:

uw=kKx@6

o =k x 62

Value

The calculated value of fO.

Examples

# Basic example with normal distribution
# Component 2 represents primary-secondary transmission
fo(x = 0.5, mu = 12, sigma = 3, comp = 2, dist = "normal”)

# Same parameters with gamma distribution
fo(x = @.5, mu = 12, sigma = 3, comp = 2, dist = "gamma")

# Component 1 represents co-primary transmission
fo(x = 0.3, mu = 8, sigma = 2, comp = 1, dist = "normal”)

# Calculate for all transmission route components
x_val <- 0.4

mu_val <- 10

sigma_val <- 3

# Components 1-7 represent different transmission routes:
# 1: Co-Primary, 2+3: Primary-Secondary, 4+5: Primary-Tertiary, 6+7: Primary-Quaternary
sapply(1:7, function(comp) {

fo(x_val, mu_val, sigma_val, comp, "normal")

b
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flower Calculate flower for Different Components

Description

This function calculates the value of flower based on the component.

Usage
flower(x, r, mu, sigma, comp, dist = "normal”)
Arguments
X The value at which to evaluate the function.
r The value of 1.
mu The mean value.
sigma The standard deviation.
comp The component number (1 to 7).
dist string; assumed distribution of the serial interval; accepts "normal” or "gamma";
defaults to "normal"
Value

The calculated value of flower.

Examples

# Basic example with normal distribution
# Component 2 represents primary-secondary transmission
flower(x = 15, r = 10, mu = 12, sigma = 3, comp = 2, dist = "normal”)

# Same parameters with gamma distribution
flower(x = 15, r = 10, mu = 12, sigma = 3, comp = 2, dist = "gamma")

# Component 1 represents co-primary transmission
flower(x = 5, r = 20, mu = 8, sigma = 2, comp = 1, dist = "normal"”)

# Calculate for all transmission route components
x_val <- 20

r_val <- 25

mu_val <- 10

sigma_val <- 3

# Components 1-7 represent different transmission routes
sapply(1:7, function(comp) {
flower(x_val, r_val, mu_val, sigma_val, comp, "normal”)

b
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fupper Calculate fupper for Different Components

Description

This function calculates the value of fupper based on the component.

Usage
fupper(x, r, mu, sigma, comp, dist = "normal”)
Arguments
X The value at which to evaluate the function.
r The value of 1.
mu The mean value.
sigma The standard deviation.
comp The component number (1 to 7).
dist string; assumed distribution of the serial interval; accepts "normal” or "gamma";
defaults to "normal".
Value

The calculated value of fupper.

Examples

# Basic example with normal distribution
# Component 2 represents primary-secondary transmission
fupper(x = 15, r = 20, mu = 12, sigma = 3, comp = 2, dist = "normal”)

# Same parameters with gamma distribution
fupper(x = 15, r = 20, mu = 12, sigma = 3, comp = 2, dist = "gamma")

# Component 1 represents co-primary transmission
fupper(x = 5, r = 25, mu = 8, sigma = 2, comp = 1, dist = "normal"”)

# Calculate for all transmission route components
x_val <- 10

r_val <- 30

mu_val <- 12

sigma_val <- 3

# Components 1-7 represent different transmission routes
sapply(1:7, function(comp) {
fupper(x_val, r_val, mu_val, sigma_val, comp, "normal”)

b



12 f_gam

f_gam Calculate serial interval mixture density assuming underlying gamma
distribution

Description

This function computes the weighted mixture density for serial intervals based on different trans-
mission routes in an outbreak. It implements part of the Vink et al. (2014) method for serial interval
estimation, assuming an underlying gamma distribution for the serial interval.

Usage

f_gam(x, wl, w2, w3, mu, sigma)

Arguments
X quantile or vector of quantiles (time in days since index case symptom onset)
wi probability weight of being a co-primary case
w2 probability weight of being a primary-secondary case
w3 probability weight of being a primary-tertiary case
mu mean serial interval in days (must be positive)
sigma standard deviation of serial interval in days (must be positive)
Details

The function models four distinct transmission routes:

* Co-primary (CP): Cases infected simultaneously from the same source

* Primary-secondary (PS): Direct transmission from index case

* Primary-tertiary (PT): Transmission through one intermediate case

* Primary-quaternary (PQ): Transmission through two intermediate cases
Each route contributes to the overall serial interval distribution with different means and variances.
The co-primary component uses a modified gamma distribution to account for simultaneous infec-

tions, while subsequent generations follow gamma distributions with progressively longer means
and larger variances.

This function is primarily used internally by si_estim when dist = "gamma” is specified, and by
plot_si_fit for visualizing fitted distributions.

The weights w1, w2, and w3 must sum to <= 1, with the remaining probability (1 - wl - w2 - w3)
assigned to primary-quaternary cases. The function converts the mean and standard deviation to
gamma distribution shape (k) and scale (\theta) parameters using the method of moments:

k=p?/o?

0=0%/u
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Value
Vector of weighted density values corresponding to input quantiles x. Returns the sum of densities
from all four transmission routes.
References
Vink, M. A., Bootsma, M. C. J., & Wallinga, J. (2014). Serial intervals of respiratory infectious
diseases: A systematic review and analysis. American Journal of Epidemiology, 180(9), 865-875.
See Also
si_estim, plot_si_fit, f_norm
Examples
# Example: Plot serial interval mixture density for influenza-like outbreak
# Set parameters for a typical respiratory infection
mu <- 6.5 # Mean serial interval of 6.5 days

sigma <- 2.8 # Standard deviation of 2.8 days

# Set transmission route weights

wl <- 0.1 # 10% co-primary cases
w2 <- 0.6 # 60% primary-secondary cases
w3 <- 0.2 # 20% primary-tertiary cases

# Remaining 10% are primary-quaternary cases (1 - wl - w2 - w3 =0.1)

# Create sequence of time points
x <- seq(@.1, 30, by = 0.1)

# Calculate mixture density
density_values <- f_gam(x, wl, w2, w3, mu, sigma)

# Plot the result
plot(x, density_values, type = "1", 1lwd = 2, col = "red"”,
xlab = "Days”, ylab = "Density”,

main = "Serial Interval Mixture Density (Gamma Distribution)")
grid()
f_norm Calculate serial interval mixture density assuming underlying normal
distribution
Description

This function computes the weighted mixture density for serial intervals based on different trans-
mission routes in an outbreak. It implements part of the Vink et al. (2014) method for serial interval
estimation, assuming an underlying normal distribution for the serial interval.
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Usage

f_norm(x, wl, w2, w3, mu, sigma)

Arguments
X quantile or vector of quantiles (time in days since index case symptom onset)
w1 probability weight of being a co-primary case
w2 probability weight of being a primary-secondary case
w3 probability weight of being a primary-tertiary case
mu mean serial interval in days (can be any real number)
sigma standard deviation of serial interval in days (must be positive)
Details

The function models four distinct transmission routes:

* Co-primary (CP): Cases infected simultaneously from the same source

* Primary-secondary (PS): Direct transmission from index case

* Primary-tertiary (PT): Transmission through one intermediate case

* Primary-quaternary (PQ): Transmission through two intermediate cases
Each route contributes to the overall serial interval distribution with different means and variances.
The co-primary component uses a half-normal distribution to model simultaneous infections (pre-

venting negative serial intervals), while subsequent generations follow normal distributions with
means that are multiples of the base serial interval.

This function is primarily used internally by si_estim when dist = "normal” is specified (the de-
fault), and by plot_si_fit for visualizing fitted distributions. The normal distribution assumption
allows for negative serial intervals, which may be more realistic for some pathogens.

The weights wl, w2, and w3 must sum to <= 1, with the remaining probability (1 - wl - w2 -
w3) assigned to primary-quaternary cases. The transmission route distributions are parameterized
as: Co-primary: Half-normal with scale parameter derived from sigma Primary-secondary: Nor-
mal(mu, sigma) Primary-tertiary: Normal(2*mu, sqrt(2)sigma) Primary-quaternary: Normal(3mu,
sqrt(3)*sigma)

Value
Vector of weighted density values corresponding to input quantiles x. Returns the sum of densities
from all four transmission routes.

References
Vink, M. A., Bootsma, M. C. J., & Wallinga, J. (2014). Serial intervals of respiratory infectious
diseases: A systematic review and analysis. American Journal of Epidemiology, 180(9), 865-875.

See Also

si_estim, plot_si_fit, f_gam
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Examples

# Example: Plot serial interval mixture density for scabies outbreak

# Set parameters based on scabies epidemiology (longer serial interval)
mu <- 123 # Mean serial interval of 123 days (from Ainslie et al.)
sigma <- 32 # Standard deviation of 32 days

# Set transmission route weights typical for scabies

wl <- 0.15 # 15% co-primary cases

w2 <- 0.50 # 50% primary-secondary cases

w3 <- 0.25 # 25% primary-tertiary cases

# Remaining 10% are primary-quaternary cases (1 - wl - w2 - w3 = 0.1)

# Create sequence of time points
x <- seq(@, 400, by = 1)

# Calculate mixture density
density_values <- f_norm(x, wl, w2, w3, mu, sigma)

# Plot the result
plot(x, density_values, type = "1", 1lwd = 2, col = "red"”,

xlab = "Days"”, ylab = "Density"”,

main = "Serial Interval Mixture Density (Normal Distribution)")
grid()

generate_case_bootstrap
Generate Bootstrap Sample of Case Incidence

Description

Creates a bootstrap sample by resampling individual cases with replacement, then reconstructing
daily incidence counts. This maintains the temporal distribution while introducing sampling varia-
tion for uncertainty estimation.

Usage

generate_case_bootstrap(incidence)

Arguments

incidence numeric vector; daily case counts (non-negative integers)

Value

numeric vector; bootstrapped daily incidence of the same length as input. Total number of cases
remains the same but their temporal distribution varies
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generate_synthetic_epidemic
Generate Synthetic Epidemic Data Using the Renewal Equation

Description

Simulates epidemic incidence data with known reproduction numbers using the renewal equation
framework. This function is useful for testing and validating reproduction number estimation meth-
ods, as it generates synthetic outbreaks with ground truth R values that can be compared against
estimated values.

Usage
generate_synthetic_epidemic(
true_r,
si_mean,
si_sd,
si_dist = "gamma”,
initial_cases = 10
)
Arguments
true_r numeric vector; the true time-varying reproduction numbers. The length of this
vector determines the number of days in the simulated epidemic
si_mean numeric; the mean of the serial interval distribution in days
si_sd numeric; the standard deviation of the serial interval distribution in days
si_dist character; the distribution family for the serial interval. Must be either "gamma"

(default) or "normal”. Gamma is recommended as it naturally restricts to posi-
tive values

initial_cases integer; the number of cases on the first day of the epidemic. Defaults to 10

Details

The function implements the discrete renewal equation:
t—1
A=Y I, Re-w(t—s)
s=1

where )\; is the expected number of new infections at time ¢, I is the incidence at time s, R is the
reproduction number at time s, and w(t — s) is the probability mass function of the serial interval
distribution for interval ¢t — s.

New cases at each time point are drawn from a Poisson distribution with mean )\, introducing
realistic stochastic variation while maintaining the specified reproduction number trajectory.
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The serial interval distribution is truncated at the 99th percentile to avoid computationally expen-
sive calculations for very long tails. For the normal distribution, the probability mass function is
normalized to ensure proper probability weights.

This function is particularly useful for:

* Validating reproduction number estimation methods
¢ Testing the performance of epidemiological models
* Generating realistic epidemic scenarios for research

* Creating training data for machine learning approaches

Value

A data frame with three columns:

» date: Date sequence starting from "2023-01-01"
* true_r: The input reproduction number values

* incidence: Simulated daily case counts

References

Fraser C (2007). Estimating individual and household reproduction numbers in an emerging epi-
demic. PLoS One, 2(8), e758.

Cori A, Ferguson NM, Fraser C, Cauchemez S (2013). A new framework and software to estimate
time-varying reproduction numbers during epidemics. American Journal of Epidemiology, 178(9),
1505-1512.

See Also

wallinga_lipsitch for reproduction number estimation methods that can be applied to the gener-
ated data

Examples

# Simple epidemic with constant R = 1.5
constant_r <- rep(1.5, 30)
epidemicl <- generate_synthetic_epidemic(
true_r = constant_r,
si_mean = 7
si_sd =
si_dist
)
head(epidemic1)

)

’

I w 1

”gamma n

# Epidemic with declining R (e.g., intervention effect)
declining_r <- seq(2.0, 0.5, length.out = 50)
epidemic2 <- generate_synthetic_epidemic(

true_r = declining_r,

si_mean = 5,

si_sd = 2,
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si_dist = "gamma”,
initial_cases = 5

)

# Epidemic with seasonal pattern
days <- 100
seasonal_r <- 1.2 + 0.5 * sin(2 * pi * (1:days) / 365 x 7) # Weekly seasonality
epidemic3 <- generate_synthetic_epidemic(
true_r = seasonal_r,

si_mean = 6,
si_sd = 2.5,
si_dist = "normal”

# Plot the results
if (require(ggplot2)) {
library(ggplot2)
ggplot(epidemicl, aes(x = date)) +
geom_col(aes(y = incidence), alpha = 0.7) +
geom_line(aes(y = true_r * 10), color = "red") +
labs(title = "Synthetic Epidemic”,
y = "Daily Incidence”,
subtitle = "Red line: True R x 10")

integrate_component Integrate Serial Interval Component Functions for Likelihood Calcu-
lation

Description

This function performs numerical integration of serial interval component functions used in the Vink
method for estimating serial interval distributions. It integrates the probability density functions
for different transmission routes over specified intervals as part of the Expectation-Maximization
algorithm.

Usage

integrate_component(
d,
mu,
sigma,
comp,
dist = c("normal”, "gamma"),
lower = TRUE
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Arguments
d numeric; the index case-to-case (ICC) interval in days for which to calculate the
likelihood contribution
mu numeric; the mean of the serial interval distribution in days
sigma numeric; the standard deviation of the serial interval distribution in days
comp integer; the transmission route component number (1 to 7). See Details for
component definitions
dist character; the assumed underlying distribution of the serial interval. Must be
either "normal" or "gamma". Defaults to "normal"
lower logical; if TRUE (default), performs integration using flower and fupper func-
tions. If FALSE, uses f@ function
Details

The function supports two integration modes:

* lower = TRUE: Integrates using flower and fupper functions over intervals [d-1, d] and [d,
d+1] respectively, representing the likelihood contribution when case occurs at day d

* lower = FALSE: Integrates using f@ function over interval [d, d+11], representing an alterna-
tive likelihood formulation

The components represent different transmission routes in outbreak analysis:

e Component 1: Co-Primary (CP) transmission
* Components 2+3: Primary-Secondary (PS) transmission
e Components 4+5: Primary-Tertiary (PT) transmission

* Components 6+7: Primary-Quaternary (PQ) transmission

This function is primarily used internally by si_estim() as part of the Vink method for estimating
serial interval parameters from outbreak data.

Value

numeric; the integrated likelihood value for the specified component and data point. Used in the
EM algorithm for serial interval estimation

References
Vink MA, Bootsma MCJ, Wallinga J (2014). Serial intervals of respiratory infectious diseases: A
systematic review and analysis. American Journal of Epidemiology, 180(9), 865-875.

See Also

flower, fupper, f0, si_estim
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Examples

# Basic example with lower integration (default)
# Component 2 represents primary-secondary transmission
integrate_component(d = 15, mu = 12, sigma = 3, comp = 2, dist = "normal”, lower = TRUE)

# Upper integration example
integrate_component(d = 15, mu = 12, sigma = 3, comp = 2, dist = "normal”, lower = FALSE)

# Using gamma distribution
integrate_component(d = 10, mu

8, sigma = 2, comp = 1, dist = "gamma”, lower = TRUE)

# Component 1 (co-primary transmission) with normal distribution
integrate_component(d = 5, mu = 10, sigma = 3, comp = 1, dist = "normal”, lower = TRUE)

# Compare different components for the same data point
d_val <- 20

mu_val <- 15

sigma_val <- 4

# Calculate for components 1, 2, and 4 (different transmission routes)
sapply(c(1, 2, 4), function(comp) {
integrate_component(d_val, mu_val, sigma_val, comp, "normal”, lower = TRUE)

b

integrate_components_wrapper
Compute Serial Interval Component Integrals for All Transmission
Routes

Description

This wrapper function efficiently computes the likelihood contributions for all relevant transmis-
sion route components for a given index case-to-case (ICC) interval. It is a key component of the
Vink method’s Expectation-Maximization algorithm for estimating serial interval parameters from
outbreak data.

Usage
integrate_components_wrapper(d, mu, sigma, dist = "normal”)
Arguments
d numeric; the index case-to-case (ICC) interval in days. Represents the time
difference between the symptom onset of the index case (latest case) and the
current case being evaluated. Must be non-negative
mu numeric; the mean of the serial interval distribution in days. Must be positive

for meaningful epidemiological interpretation
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sigma numeric; the standard deviation of the serial interval distribution in days. Must
be positive

dist character; the assumed underlying distribution family for the serial interval.
Must be either "normal" or "gamma". Defaults to "normal". Gamma distri-
bution is often preferred for serial intervals as it naturally restricts to positive
values

Details

The function handles different integration scenarios based on the distribution type and ICC interval
value:

» For normal distribution: Uses all 7 components representing the full mixture of transmis-
sion routes (co-primary, primary-secondary with positive and negative components, primary-
tertiary, and primary-quaternary routes)

* For gamma distribution: Uses components 1, 2, 4, and 6 only, as the gamma distribution
naturally handles only positive serial intervals, eliminating the need for negative component
pairs

» For ICC interval = 0: Uses upper integration (lower = FALSE) representing the special case
of simultaneous symptom onset

» For ICC interval > 0: Uses lower integration (lower = TRUE) representing the standard trans-
mission likelihood calculation

This function is primarily used internally by si_estim() as part of the E-step in the EM algorithm.
Each component represents a different hypothesis about the transmission route:

e Component 1: Co-primary transmission (simultaneous exposure)

¢ Components 2-3: Primary-secondary transmission (direct transmission)

e Components 4-5: Primary-tertiary transmission (second generation)

¢ Components 6-7: Primary-quaternary transmission (third generation)
For gamma distributions, components 3, 5, and 7 are omitted because the gamma distribution natu-

rally handles the asymmetry that these components would otherwise model in the normal distribu-
tion case.

Value

numeric vector; integrated likelihood values for each relevant transmission route component. The
length depends on the distribution:

* Normal distribution: 7 values (components 1-7)

* Gamma distribution: 4 values (components 1, 2, 4, 6)

References

Vink MA, Bootsma MCJ, Wallinga J (2014). Serial intervals of respiratory infectious diseases: A
systematic review and analysis. American Journal of Epidemiology, 180(9), 865-875.
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See Also

integrate_component, si_estim, flower, fupper, fo

Examples

# Basic example with normal distribution
# Returns 7 component values for ICC interval of 10 days
integrate_components_wrapper(d = 10, mu = 15, sigma = 3, dist = "normal")

# Same parameters with gamma distribution
# Returns 4 component values (components 1, 2, 4, 6)

integrate_components_wrapper(d = 10, mu = 15, sigma = 3, dist = "gamma")

# Special case: ICC interval of @ (simultaneous onset)

integrate_components_wrapper(d = @, mu = 12, sigma = 2, dist = "normal”)
plot_si_fit Visualize Serial Interval Distribution Fit to Outbreak Data
Description

Creates a diagnostic plot showing the fitted serial interval mixture distribution overlaid on a his-
togram of observed index case-to-case (ICC) intervals from outbreak data.

Usage
plot_si_fit(dat, mean, sd, weights, dist = "normal”, scaling_factor = 1)
Arguments
dat numeric vector; the index case-to-case (ICC) intervals in days. These represent
the time differences between symptom onset in the index case (case with earliest
symptom onset) and each other case in the outbreak
mean numeric; the estimated mean of the serial interval distribution in days, typically
obtained from si_estim()
sd numeric; the estimated standard deviation of the serial interval distribution in
days, typically obtained from si_estim()
weights numeric vector; the estimated weights for different transmission route compo-
nents. Length and interpretation depends on distribution:
* Normal distribution: 4 weights corresponding to aggregated transmission
routes (co-primary, primary-secondary, primary-tertiary, primary-quaternary)
* Gamma distribution: 3 weights for the reduced component set
dist character; the distribution family used for serial interval estimation. Must be

either "normal" (default) or "gamma". Should match the distribution used in the
original si_estim() call
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scaling_factor numeric; multiplicative factor to adjust the height of the fitted density curve
relative to the histogram. Values > 1 make the curve higher, values < 1 make it
lower. Defaults to 1. Useful when histogram and density have different scales.

Details

The function displays:
* Histogram: Observed ICC intervals binned by day, representing the empirical distribution of
time differences between symptom onset in the index case and all other cases in the outbreak

* Fitted curve: The estimated mixture distribution combining different transmission routes (co-
primary, primary-secondary, primary-tertiary, and primary-quaternary), weighted according to
their estimated probabilities

¢ Reference line: For normal distributions, a dashed vertical line indicates the estimated mean
serial interval

Value
A ggplot2 object that can be further customized or displayed. The plot includes appropriate axis
labels, legend, and styling for publication-quality figures

References
Vink MA, Bootsma MCJ, Wallinga J (2014). Serial intervals of respiratory infectious diseases: A
systematic review and analysis. American Journal of Epidemiology, 180(9), 865-875.

See Also
si_estim for serial interval estimation, f_norm and f_gam for the underlying mixture distribution
functions

Examples

# Example 1: Visualize fit for simulated outbreak data
set.seed(123)

# Simulate ICC intervals from mixed distribution
icc_data <- c(

rnorm(20, mean = @, sd = 2), # Co-primary cases
rnorm(50, mean = 12, sd = 3), # Primary-secondary cases
rnorm(20, mean = 24, sd = 4) # Primary-tertiary cases

)

icc_data <- round(pmax(icc_data, @)) # Ensure non-negative

# Plot with estimated parameters
plot_si_fit(

dat = icc_data,

mean = 12.5,

sd = 3.2,
weights = c(0.2, 0.6, 0.15, 0.05),
dist = "normal”
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# Example 2: Using gamma distribution

plot_si_fit(
dat = icc_data,
mean = 12.0,
sd = 3.5,

weights = c(0.25, 0.65, 0.10),

dist = "gamma",
scaling_factor

= 0.8

si_estim

Estimate Serial Interval Distribution Using the Vink Method

Description

Estimates the mean and standard deviation of the serial interval distribution from outbreak data
using the Expectation-Maximization (EM) algorithm developed by Vink et al. (2014). The serial
interval is defined as the time between symptom onset in a primary case and symptom onset in a
secondary case infected by that primary case.

Usage

si_estim(dat, n

Arguments

dat

dist

init

= 50, dist = "normal”, init = NULL)

numeric vector; index case-to-case (ICC) intervals in days. These are calculated
as the time difference between symptom onset in each case and symptom onset
in the index case (case with earliest onset). Must contain at least 2 values. Val-
ues should be non-negative in most epidemiological contexts, though negative
values are allowed for normal distribution

integer; number of EM algorithm iterations to perform. More iterations gener-
ally improve convergence but increase computation time. Defaults to 50, which
is typically sufficient for convergence

character; the assumed parametric family for the serial interval distribution.
Must be either:

* "normal” (default): Allows negative serial intervals, uses 7 mixture com-
ponents

* "gamma": Restricts to positive serial intervals, uses 4 mixture components

numeric vector of length 2; initial values for the mean and standard deviation
to start the EM algorithm. If NULL (default), uses the sample mean and sample
standard deviation of the input data. Providing good initial values can improve
convergence, especially for challenging datasets
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Details

The Vink method addresses the challenge that individual transmission pairs are typically unknown
in outbreak investigations. Instead, it uses index case-to-case (ICC) intervals - the time differences
between the case with earliest symptom onset (index case) and all other cases - to infer the under-
lying serial interval distribution through a mixture modeling approach.

Methodological Approach:

The method models ICC intervals as arising from a mixture of four transmission routes:

* Co-Primary (CP): Cases infected simultaneously from the same source
¢ Primary-Secondary (PS): Direct transmission from index case
* Primary-Tertiary (PT): Second-generation transmission
* Primary-Quaternary (PQ): Third-generation transmission
The EM algorithm iteratively:
1. E-step: Calculates the probability that each ICC interval belongs to each transmission route
component
2. M-step: Updates the serial interval parameters (mean, standard deviation) and component
weights based on these probabilities

Distribution Choice:

* Normal distribution: Allows negative serial intervals (useful for modeling co-primary infec-
tions) and uses 7 components (positive and negative pairs for PS, PT, PQ routes plus CP)

* Gamma distribution: Restricts to positive values only, uses 4 components (CP, PS, PT, PQ
without negative pairs). Recommended when negative serial intervals are epidemiologically
implausible

Key Assumptions:

* The case with earliest symptom onset is the index case

* Transmission occurs through at most 4 generations

* Serial intervals follow the specified parametric distribution
* Cases represent a single, homogeneously-mixing outbreak

Input Data Preparation:

To prepare ICC intervals from outbreak data:

1. Identify the case with the earliest symptom onset date (index case)

2. Calculate the time difference (in days) between each case’s onset date and the index case onset
date

3. The resulting values are the ICC intervals for input to this function

Convergence and Diagnostics:
The EM algorithm typically converges within 20-50 iterations. Users should:

» Examine the fitted distribution using plot_si_fit

* Consider alternative distribution choices if fit is poor

» Try different initial values if results seem unreasonable

 Ensure adequate sample size (generally >20 cases recommended)
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Value

A named list containing:

* mean: Estimated mean of the serial interval distribution (days)

* sd: Estimated standard deviation of the serial interval distribution (days)

si_estim

* wts: Numeric vector of estimated component weights representing the probability that cases
belong to each transmission route. Length depends on distribution choice (7 for normal, 4 for

gamma)

References

Vink MA, Bootsma MCJ, Wallinga J (2014). Serial intervals of respiratory infectious diseases: A
systematic review and analysis. American Journal of Epidemiology, 180(9), 865-875. doi:10.1093/

aje/kwu209

See Also

plot_si_fit for diagnostic visualization, integrate_component for the underlying likelihood

calculations

Examples

# Example 1:Basic usage with simulated data

set.seed(123)

simulated_icc <- c(

rep(1, 20),
rep(2, 25),
rep(3, 15),
rep(4, 8)

)

# Short intervals (co-primary cases)

# Medium intervals (primary-secondary)
# Longer intervals (higher generation)

result <- si_estim(simulated_icc)

# Example 2: Larger simulated outbreak, specifying distribution

large_icc <- ¢(

rep(1, 38), # Short intervals (co-primary cases)
rep(2, 39), #
rep(3, 30), # Medium intervals (primary-secondary)
rep(4, 17), #
rep(5, 7), # Longer intervals (higher generation)
rep(6, 4),
rep(7, 2)
)
result_normal <- si_estim(large_icc, dist = "normal”)
result_gamma <- si_estim(large_icc, dist = "gamma")

# Example 3: Using custom initial values

result_custom <- si_estim(large_icc, dist = "normal”, init

= ¢(3.0, 1.5))


https://doi.org/10.1093/aje/kwu209
https://doi.org/10.1093/aje/kwu209
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# Example 4: Specify iterations
result_iter <- si_estim(large_icc, n=100)

smooth_estimates Apply Moving Average Smoothing to R Estimates

Description

Applies temporal smoothing to reproduction number estimates using a centered moving average
window. Handles missing and infinite values appropriately.

Usage

smooth_estimates(r_estimate, window)

Arguments
r_estimate numeric vector; reproduction number estimates to smooth. Can contain NA or
infinite values
window integer; size of the smoothing window in time units. Window is centered around
each point
Value

numeric vector; smoothed reproduction number estimates of the same length as input. Returns NA
for points with insufficient valid neighboring values

wallinga_lipsitch Estimate Time-Varying Case Reproduction Number Using Wallinga-
Lipsitch Method

Description

Estimates the time-varying case reproduction number (R_c) from daily incidence data using the
method developed by Wallinga and Lipsitch (2007). The case reproduction number represents the
average number of secondary infections generated by cases with symptom onset at time t, making
it useful for retrospective outbreak analysis.
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Usage

wallinga_lipsitch

wallinga_lipsitch(

incidence,
dates,
si_mean,
si_sd,

si_dist = "gamma”,

smoothing = @
bootstrap
n_bootstrap =

’

FALSE,

1000,

conf_level = 0.95,

shift = FALSE

Arguments

incidence

dates

si_mean

si_sd

si_dist

smoothing

bootstrap

n_bootstrap

conf_level

shift

numeric vector; daily case counts. Must be non-negative integers or counts.
Length must match dates

vector; dates corresponding to each incidence count. Must be the same length
as incidence. Can be Date objects or anything coercible to dates

numeric; mean of the serial interval distribution in days. Must be positive. Typ-
ically estimated from contact tracing data or literature

numeric; standard deviation of the serial interval distribution in days. Must be
positive

character; distribution family for the serial interval. Options:

» "gamma” (default): Recommended for most applications as it naturally re-
stricts to positive values

* "normal”: Allows negative serial intervals, useful when co-primary infec-
tions are suspected

integer; window size for temporal smoothing of R estimates. Use O for no
smoothing (default), or positive integers for moving average smoothing over
the specified number of days

logical; whether to calculate bootstrap confidence intervals. Defaults to FALSE.
Setting to TRUE increases computation time but provides uncertainty quantifica-
tion

integer; number of bootstrap samples when bootstrap = TRUE. More samples

provide more stable intervals but increase computation time. Defaults to 1000

numeric; confidence level for bootstrap intervals, between 0 and 1. Defaults to
0.95 (95% confidence intervals)

logical; whether to shift R estimates forward by one mean serial interval. When
TRUE, adds a shifted_date column for comparison with instantaneous repro-
duction number estimates. Defaults to FALSE
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Details

The method calculates the relative likelihood that each earlier case infected each later case based
on their time differences and the serial interval distribution, then aggregates these likelihoods to
estimate reproduction numbers. The approach makes minimal assumptions beyond specifying the
serial interval distribution.

Key features:

* Pairwise likelihood approach: Considers all epidemiologically plausible transmission pairs
(earlier to later cases)

Right-truncation correction: Adjusts for unobserved future cases (see calculate_truncation_correction)
* Bootstrap confidence intervals: Quantifies estimation uncertainty
* Temporal shifting: Optional alignment with instantaneous R estimates
* Flexible smoothing: User-controlled temporal smoothing of estimates
The Wallinga-Lipsitch method estimates the case reproduction number by:
1. Computing transmission likelihoods from each earlier case to each later case based on the
serial interval distribution
2. Normalizing these likelihoods so they sum to 1 for each potential infectee
3. Aggregating normalized likelihoods to estimate expected secondary cases per primary case
4. Applying corrections for right-truncation bias
Right-truncation correction accounts for secondary cases that may occur after the observation

period ends (see calculate_truncation_correction). This correction is particularly important
for recent cases in the time series.

Bootstrap confidence intervals are calculated by resampling individual cases with replacement,
providing non-parametric uncertainty estimates that account for both Poisson sampling variation
and method uncertainty.

Value
A data frame with the following columns:

 date: Original input dates

* incidence: Original input case counts

* R: Estimated case reproduction number

e R_corrected: Case reproduction number with right-truncation correction

* R_lower, R_upper: Bootstrap confidence intervals for R (if bootstrap = TRUE)

* R_corrected_lower, R_corrected_upper: Bootstrap confidence intervals for R_corrected
(if bootstrap = TRUE)

* shifted_date: Dates shifted forward by mean serial interval (if shift = TRUE)

Note

The case reproduction number differs from the instantaneous reproduction number in timing: R_c
reflects the reproductive potential of cases by their symptom onset date, while instantaneous R
reflects transmission potential at the time of infection. Use shift = TRUE for comparisons with
instantaneous R estimates.
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References

Wallinga J, Lipsitch M (2007). How generation intervals shape the relationship between growth
rates and reproductive numbers. Proceedings of the Royal Society B: Biological Sciences, 274(1609),
599-604. doi:10.1098/rspb.2006.3754

See Also

si_estimfor serial interval estimation, generate_synthetic_epidemic for testing data, calculate_truncation_correct
for right-truncation correction

Examples

# Example 1: Basic usage with synthetic data
set.seed(123)
dates <- seq(as.Date("2023-01-01"), by = "day"”, length.out = 30)
incidence <- c(1, 2, 4, 7, 12, 15, 18, 20, 22, 19,
16, 14, 11, 9, 7, 5, 4, 3, 2, 1,
rep(0, 10))

# Estimate reproduction number
result <- wallinga_lipsitch(
incidence = incidence,
dates = dates,
si_mean = 7,
si_sd =
si_dist

’

I w 1

”gamma n

# View results
head(result)

# Example 2: With bootstrap confidence intervals
result_ci <- wallinga_lipsitch(

incidence = incidence,

dates = dates,

si_mean 7,

si_sd =

si_dist "gamma",

bootstrap = TRUE,

n_bootstrap = 500 # Reduced for faster example
)

’

I w 1

# Plot results with confidence intervals
if (require(ggplot2)) {
library(ggplot2)
ggplot(result_ci, aes(x = date)) +
geom_ribbon(aes(ymin = R_corrected_lower, ymax = R_corrected_upper),
alpha = 0.3, fill = "blue") +

geom_line(aes(y = R_corrected), color = "blue”, size = 1) +
geom_hline(yintercept = 1, linetype = "dashed”, color = "red") +
labs(x = "Date”, y = "Reproduction Number",

title = "Time-varying Reproduction Number") +


https://doi.org/10.1098/rspb.2006.3754

weighted_var 31

theme_minimal()

}

# Example 3: With smoothing and shifting
result_smooth <- wallinga_lipsitch(
incidence = incidence,
dates = dates,
si_mean = 7,
si_sd =
si_dist "gamma",
smoothing = 7, # 7-day smoothing window
shift = TRUE # Shift for comparison with instantaneous R

’

1 w 1

# Example 4: Using normal distribution for serial interval
result_normal <- wallinga_lipsitch(
incidence = incidence,
dates = dates,
si_mean 6,
si_sd =
si_dist "normal”,
smoothing = 5

’

N

weighted_var Calculate Sample Weighted Variance

Description

Computes the sample weighted variance of a numeric vector using precision weights. This func-
tion implements the standard unbiased weighted variance estimator commonly used in statistical
applications where observations have different precisions or levels of confidence.

Usage

weighted_var(x, w, na.rm = FALSE)

Arguments
X numeric vector; the data values for which to calculate weighted variance. Miss-
ing values are allowed if na.rm = TRUE
w numeric vector; the precision weights corresponding to each observation in x.
These represent how much confidence to place in each measurement (higher =
more trusted). Must be the same length as x. Should be non-negative
na.rm logical; if TRUE, missing values (both NA and NaN) are removed before computa-

tion. If FALSE (default), missing values will cause the function to return NA
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Details

The weighted variance is calculated using the formula:

4 S L

where Z,, is the weighted mean and w; are the weights.

This function uses precision weights (also called reliability weights), which represent how much
confidence or trust to place in each observation, rather than frequency weights that represent how
many times to count each observation.

The denominator correction (3 w?— (3 w;)?) provides an unbiased estimator for precision weights.
Examples of precision weights include probabilities (0-1), measurement confidence scores, or in-
verse error variances.

Value

numeric; the weighted sample variance. Returns NA if insufficient data or if na.rm = FALSE and
missing values are present

See Also

weighted.mean for weighted mean calculation, var for unweighted sample variance

Examples

# Example 1: Basic weighted variance calculation
values <- c(2.1, 3.5, 1.8, 4.2, 2.9)

weights <- c(0.8, 0.3, 0.9, 0.5, 0.7)
weighted_var(values, weights)

# Example 2: Compare with unweighted variance

x <= 1:10

equal_weights <- rep(1, 10)

unweighted_var <- var(x)

weighted_var_equal <- weighted_var(x, equal_weights)

# Example 3: Using precision weights

# Measurements with different levels of confidence

measurements <- c(10.2, 9.8, 10.5, 9.9, 10.1)

confidence_levels <- c¢(0.9, 0.6, 0.8, .95, 0.7) # How much we trust each measurement

precision_weighted_var <- weighted_var(measurements, confidence_levels)
# Example 4: Handling missing values
x_with_na <- c(1, 2, NA, 4, 5)

weights_with_na <- c(0.2, 0.3, 0.1, 0.8, 0.4)

# This will return NA
result_na <- weighted_var(x_with_na, weights_with_na, na.rm = FALSE)
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# This will calculate after removing NA
result_removed <- weighted_var(x_with_na, weights_with_na, na.rm = TRUE)

# Example 5: Different weight patterns and their effects
data_points <- c(10, 15, 20, 25, 30)

# Equal weights (should approximate unweighted variance)
equal_wts <- rep(1, 5)
var_equal <- weighted_var(data_points, equal_wts)

# Emphasizing central values
central_wts <- c(0.1, 0.3, 1.0, 0.3, 0.1)
var_central <- weighted_var(data_points, central_wts)

# Emphasizing extreme values
extreme_wts <- c(1.9, 0.1, 0.1, 0.1, 1.9)
var_extreme <- weighted_var(data_points, extreme_wts)

wt_loglik Calculate Weighted Negative Log-Likelihood for Gamma Distribution
Parameters

Description

Computes the weighted negative log-likelihood for gamma distribution parameters in the M-step
of the EM algorithm for serial interval estimation. This function is used as the objective func-
tion for numerical optimization when the serial interval distribution is assumed to follow a gamma
distribution.

Usage

wt_loglik(par, dat, tau2)

Arguments
par numeric vector of length 2; parameters to optimize where par[1] is the mean
and par[2] is the standard deviation of the serial interval distribution
dat numeric vector; index case-to-case (ICC) intervals. Zero values are replaced
with 0.00001 to avoid gamma distribution issues at zero
tau2 numeric vector; posterior probabilities (weights) that each observation belongs
to the primary-secondary transmission component. These are typically derived
from the E-step of the EM algorithm
Details

The function converts mean and standard deviation parameters to gamma distribution shape and
scale parameters, then calculates the weighted log-likelihood based on the posterior probabilities
from the E-step. Returns the negative log-likelihood for minimization by optim.
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This function is used internally by si_estim when dist = "gamma”. The gamma distribution is
parameterized using shape (k) and scale (theta) parameters derived from the mean and standard
deviation:

e Shape: k = u?/o?
e Scale: = o2 /p

The weighted log-likelihood is calculated as:

Z T2, log f(zi|k, 6)
where f(z;|k, #) is the gamma probability density function and 7 ; are the weights from the E-step.

Value

numeric; negative log-likelihood value for minimization. Returns a large penalty value (1e10) if
parameters result in invalid gamma distribution parameters (non-positive shape/scale) or non-finite
likelihood values

Note

This function is primarily intended for internal use within the EM algorithm. Users typically won’t
call this function directly but rather use si_estim with dist = "gamma”.

See Also

si_estim for the main serial interval estimation function, optim for the optimization routine that
uses this function

Examples

# Example usage within optimization context

# Simulate some ICC interval data and weights

set.seed(123)

icc_intervals <- rgamma(50, shape = 2, scale = 3) # True mean=6, sd=sqrt(18)
weights <- runif(50, 0.1, 1)

initial_params <- c(5, 4)

likelihood_value <- wt_loglik(initial_params, icc_intervals, weights)

# Example of parameter optimization

optimized <- optim(
par = initial_params,
fn = wt_loglik,
dat = icc_intervals,
tau2 = weights,
method = "BFGS"

)

cat("Optimized mean:", optimized$par[1], "\n")
cat("Optimized sd:", optimized$par[2], "\n")
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