The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Mixed, low-rank, and sparse multivariate regression (mixedLSR) provides tools for performing mixture regression when the coefficient matrix is low-rank and sparse. mixedLSR allows subgroup identification by alternating optimization with simulated annealing to encourage global optimum convergence. This method is data-adaptive, automatically performing parameter selection to identify low-rank substructures in the coefficient matrix.
library(mixedLSR)
set.seed(1)
To demonstrate mixedLSR, we simulate a heterogeneous population where the coefficient matrix is low-rank and sparse and the number of coefficients to estimate is much larger than the sample size.
<- simulate_lsr(N = 100, k = 2, p = 30, m = 35) sim
Then, we compute the model. We limit the number of iterations the model can run.
<- mixed_lsr(sim$x, sim$y, k = 2, alt_iter = 1, anneal_iter = 10, em_iter = 10, verbose = TRUE)
model #> mixedLSR Start: 1
#> Selecting Lambda..................................................
#> EM Step.....
#> Simulated Annealing Step
#> Full Cycle 1
#> Computing Final Model...
#> Done!
Next, we can evaluate the clustering performance of mixedLSR by viewing a cross-tabulation of the partition labels and by computing the adjusted Rand index (ARI). In this case, mixedLSR perfectly clustered the data.
table(sim$true, model$assign)
#>
#> 1 2
#> 1 52 0
#> 2 0 48
<- mclust::adjustedRandIndex(sim$true, model$assign)
ari print(paste("ARI:",ari))
#> [1] "ARI: 1"
Lastly, we can view a heatmap of the coefficient matrices and compare them to the true simulated matrices.
plot_lsr(model$a)
plot_lsr(sim$a)
Reproducibility
sessionInfo()
#> R version 4.1.3 (2022-03-10)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19044)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=C
#> [2] LC_CTYPE=English_United States.1252
#> [3] LC_MONETARY=English_United States.1252
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=English_United States.1252
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] mixedLSR_0.1.0
#>
#> loaded via a namespace (and not attached):
#> [1] highr_0.9 bslib_0.4.0 compiler_4.1.3 pillar_1.8.1
#> [5] jquerylib_0.1.4 tools_4.1.3 mclust_5.4.10 digest_0.6.29
#> [9] viridisLite_0.4.1 lattice_0.20-45 jsonlite_1.8.1 evaluate_0.16
#> [13] lifecycle_1.0.2 tibble_3.1.8 gtable_0.3.1 pkgconfig_2.0.3
#> [17] rlang_1.0.6 Matrix_1.5-1 DBI_1.1.3 cli_3.3.0
#> [21] rstudioapi_0.14 yaml_2.3.5 xfun_0.33 fastmap_1.1.0
#> [25] stringr_1.4.1 dplyr_1.0.10 knitr_1.40 generics_0.1.3
#> [29] sass_0.4.2 vctrs_0.4.2 tidyselect_1.1.2 grid_4.1.3
#> [33] glue_1.6.2 R6_2.5.1 grpreg_3.4.0 fansi_1.0.3
#> [37] rmarkdown_2.16 farver_2.1.1 purrr_0.3.4 ggplot2_3.3.6
#> [41] magrittr_2.0.3 scales_1.2.1 htmltools_0.5.3 MASS_7.3-58.1
#> [45] assertthat_0.2.1 colorspace_2.0-3 labeling_0.4.2 utf8_1.2.2
#> [49] stringi_1.7.6 munsell_0.5.0 cachem_1.0.6
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.