The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

mixedMem: Tools for Discrete Multivariate Mixed Membership Models

Fits mixed membership models with discrete multivariate data (with or without repeated measures) following the general framework of Erosheva et al (2004). This package uses a Variational EM approach by approximating the posterior distribution of latent memberships and selecting hyperparameters through a pseudo-MLE procedure. Currently supported data types are Bernoulli, multinomial and rank (Plackett-Luce). The extended GoM model with fixed stayers from Erosheva et al (2007) is now also supported. See Airoldi et al (2014) for other examples of mixed membership models.

Version: 1.1.2
Depends: R (≥ 3.0.2)
Imports: Rcpp (≥ 0.11.3), gtools
LinkingTo: Rcpp (≥ 0.11.3), RcppArmadillo, BH
Suggests: knitr, xtable
Published: 2020-12-01
DOI: 10.32614/CRAN.package.mixedMem
Author: Y. Samuel Wang [aut, cre], Elena A. Erosheva [aut]
Maintainer: Y. Samuel Wang <ysamuelwang at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
CRAN checks: mixedMem results

Documentation:

Reference manual: mixedMem.pdf
Vignettes: mixedMem

Downloads:

Package source: mixedMem_1.1.2.tar.gz
Windows binaries: r-devel: mixedMem_1.1.2.zip, r-release: mixedMem_1.1.2.zip, r-oldrel: mixedMem_1.1.2.zip
macOS binaries: r-release (arm64): mixedMem_1.1.2.tgz, r-oldrel (arm64): mixedMem_1.1.2.tgz, r-release (x86_64): mixedMem_1.1.2.tgz, r-oldrel (x86_64): mixedMem_1.1.2.tgz
Old sources: mixedMem archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mixedMem to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.