# nolint start
library(mlexperiments)
The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
# nolint start
library(mlexperiments)
See https://github.com/kapsner/mlexperiments/blob/main/R/learner_knn.R for implementation details.
library(mlbench)
data("DNA")
<- DNA |>
dataset ::as.data.table() |>
data.tablena.omit()
<- colnames(dataset)[1:180]
feature_cols <- "Class" target_col
<- 123
seed if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
<- 2L
ncores else {
} <- ifelse(
ncores test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}options("mlexperiments.bayesian.max_init" = 10L)
<- splitTools::partition(
data_split y = dataset[, get(target_col)],
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
<- model.matrix(
train_x ~ -1 + .,
$train, .SD, .SDcols = feature_cols]
dataset[data_split
)<- dataset[data_split$train, get(target_col)]
train_y
<- model.matrix(
test_x ~ -1 + .,
$test, .SD, .SDcols = feature_cols]
dataset[data_split
)<- dataset[data_split$test, get(target_col)] test_y
<- splitTools::create_folds(
fold_list y = train_y,
k = 3,
type = "stratified",
seed = seed
)
# required learner arguments, not optimized
<- list(
learner_args l = 2,
test = parse(text = "fold_test$x"),
use.all = FALSE
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
<- list(type = "response")
predict_args <- metric("bacc")
performance_metric <- NULL
performance_metric_args <- FALSE
return_models
# required for grid search and initialization of bayesian optimization
<- expand.grid(
parameter_grid k = seq(4, 68, 6)
)# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
<- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
sample_rows <- kdry::mlh_subset(parameter_grid, sample_rows)
parameter_grid
}
# required for bayesian optimization
<- list(k = c(2L, 80L))
parameter_bounds <- list(
optim_args iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerKnn$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_grid #>
#> Parameter settings [===================>------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>---------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [======================================>-----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [================================================>-------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==========================================================>---------------------------------------] 6/10 ( 60%)
#> Parameter settings [====================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [=============================================================================>--------------------] 8/10 ( 80%)
#> Parameter settings [=======================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [=================================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean k l use.all
#> 1: 1 0.1669134 16 2 FALSE
#> 2: 2 0.1256584 64 2 FALSE
#> 3: 3 0.1870928 10 2 FALSE
#> 4: 4 0.1364111 34 2 FALSE
#> 5: 5 0.1243125 58 2 FALSE
#> 6: 6 0.1462841 28 2 FALSE
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerKnn$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner
$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner
$split_type <- "stratified"
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_bayesian #>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id k gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean errorMessage l use.all
#> 1: 0 1 16 NA FALSE TRUE 1.061 -0.1651140 0.1651140 NA 2 FALSE
#> 2: 0 2 64 NA FALSE TRUE 1.131 -0.1261065 0.1261065 NA 2 FALSE
#> 3: 0 3 10 NA FALSE TRUE 1.060 -0.1835086 0.1835086 NA 2 FALSE
#> 4: 0 4 34 NA FALSE TRUE 1.074 -0.1377516 0.1377516 NA 2 FALSE
#> 5: 0 5 58 NA FALSE TRUE 1.101 -0.1247624 0.1247624 NA 2 FALSE
#> 6: 0 6 28 NA FALSE TRUE 1.046 -0.1462823 0.1462823 NA 2 FALSE
<- mlexperiments::MLCrossValidation$new(
validator learner = LearnerKnn$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- tuner$results$best.setting[-1]
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
head(validator_results)
#> fold performance k l use.all
#> 1: Fold1 0.8931022 58 2 FALSE
#> 2: Fold2 0.8445084 58 2 FALSE
#> 3: Fold3 0.9010913 58 2 FALSE
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerKnn$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Parameter settings [===================>------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>---------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [======================================>-----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [================================================>-------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==========================================================>---------------------------------------] 6/10 ( 60%)
#> Parameter settings [====================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [=============================================================================>--------------------] 8/10 ( 80%)
#> Parameter settings [=======================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [=================================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [===================>------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>---------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [======================================>-----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [================================================>-------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==========================================================>---------------------------------------] 6/10 ( 60%)
#> Parameter settings [====================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [=============================================================================>--------------------] 8/10 ( 80%)
#> Parameter settings [=======================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [=================================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
#>
#> Parameter settings [===================>------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [============================>---------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [======================================>-----------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [================================================>-------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==========================================================>---------------------------------------] 6/10 ( 60%)
#> Parameter settings [====================================================================>-----------------------------] 7/10 ( 70%)
#> Parameter settings [=============================================================================>--------------------] 8/10 ( 80%)
#> Parameter settings [=======================================================================================>----------] 9/10 ( 90%)
#> Parameter settings [=================================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance k l use.all
#> 1: Fold1 0.8863818 64 2 FALSE
#> 2: Fold2 0.8396360 64 2 FALSE
#> 3: Fold3 0.9000926 64 2 FALSE
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerKnn$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator
$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance k l use.all
#> 1: Fold1 0.8702444 28 2 FALSE
#> 2: Fold2 0.8396360 64 2 FALSE
#> 3: Fold3 0.9010913 58 2 FALSE
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.