The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
clbk("mlr3tuning.one_se_rule")
that selects the the hyperparameter configuration with the smallest
feature set within one standard error of the best.on_tuning_result_begin
and
on_result_begin
to CallbackAsyncTuning
and
CallbackBatchTuning
.on_result
to
on_result_end
in CallbackAsyncTuning
and
CallbackBatchTuning
.CallbackAsyncTuning
and
CallbackBatchTuning
documentation.as_data_table()
functions do not unnest the
x_domain
colum anymore by default.to_tune(internal = TRUE)
now also works if
non-internal tuning parameters require have an
.extra_trafo
.internal_search_space
manually. This allows to use
parameter transformations on the primary search space in combination
with internal hyperparameter tuning.Tuner
pass extra information of the
result in the extra
parameter now.BenchmarkResult
in
ObjectiveTuningBatch
after optimization.TunerAsync
and TuningInstanceAsync*
classes.Tuner
class is
TunerBatch
now.TuningInstanceSingleCrit
and
TuningInstanceMultiCrit
classes are
TuningInstanceBatchSingleCrit
and
TuningInstanceBatchMultiCrit
now.CallbackTuning
class is
CallbackBatchTuning
now.ContextEval
class is
ContextBatchTuning
now.evaluate_default
is a callback
now.TunerIrace
failed with logical parameters and
dependencies.AutoTuner
store_benchmark_result = TRUE
if
store_models = TRUE
when creating a tuning instance.tune_nested()
did not
work.$phash()
method to
AutoTuner
.Tuner
in hash of
AutoTuner
.method
parameter of
tune()
, tune_nested()
and
auto_tuner()
is renamed to tuner
. Only
Tuner
objects are accepted now. Arguments to the tuner
cannot be passed with ...
anymore.tuner
parameter of
AutoTuner
is moved to the first position to achieve
consistency with the other functions.allow_hotstarting
,
keep_hotstart_stack
and keep_models
flags to
AutoTuner
and auto_tuner()
.AutoTuner
accepts instantiated resamplings now.
The AutoTuner
checks if all row ids of the inner resampling
are present in the outer resampling train set when nested resampling is
performed.Tuner
did not create a
ContextOptimization
.ti()
function did not accept callbacks.$importance()
,
$selected_features()
, $oob_error()
and
$loglik()
are forwarded from the final model to the
AutoTuner
now.AutoTuner
stores the instance and
benchmark result if store_models = TRUE
.AutoTuner
stores the instance if
store_benchmark_result = TRUE
.mlr_callbacks
.callback_batch_tuning()
function.AutoTuner
did not accept TuningSpace
objects as search spaces.ti()
function to create a
TuningInstanceSingleCrit
or
TuningInstanceMultiCrit
.extract_inner_tuning_results()
to
return the tuning instances.evaluate_default
to evaluate learners
with hyperparameters set to their default values.smooth
is
FALSE
for TunerGenSA
.Tuner
objects have the field $id
now.Tuner
objects as
method
in tune()
and
auto_tuner()
.Tuner
to help page of
bbotk::Optimizer
.Tuner
objects have the optional field
$label
now.as.data.table()
functions for objects of class
Dictionary
have been extended with additional columns.as.data.table.DictionaryTuner
function.$help()
method which opens the manual page of
a Tuner
.as_search_space()
function to create search
spaces from Learner
and ParamSet
objects.
Allow to pass TuningSpace
objects as
search_space
in TuningInstanceSingleCrit
and
TuningInstanceMultiCrit
.mlr3::HotstartStack
can now be removed after
tuning with the keep_hotstart_stack
flag.Archive
stores errors and warnings of the
learners.auto_tuner()
and tune_nested()
.$assign_result()
method in
TuningInstanceSingleCrit
when search space is empty.TuningInstanceSingleCrit
.TuningInstanceMultiCrit$assign_result()
.store_models
flag to
auto_tuner()
."noisy"
property to
ObjectiveTuning
.AutoTuner$base_learner()
method to extract the
base learner from nested learner objects.tune()
supports multi-criteria tuning.TunerIrace
from irace
package.extract_inner_tuning_archives()
helper function to
extract inner tuning archives.ArchiveTuning$extended_archive()
method. The
mlr3::ResampleResults
are joined automatically by
as.data.table.TuningArchive()
and
extract_inner_tuning_archives()
.tune()
, auto_tuner()
and
tune_nested()
sugar functions.TuningInstanceSingleCrit
,
TuningInstanceMultiCrit
and AutoTuner
can be
initialized with store_benchmark_result = FALSE
and
store_models = TRUE
to allow measures to access the
models.TuningInstance*$assign_result()
errors with
required parameter bug.$learner()
,
$learners()
, $learner_param_vals()
,
$predictions()
and $resample_result()
from
benchmark result in archive.extract_inner_tuning_results()
helper function to
extract inner tuning results.ArchiveTuning$data
is a public field now.TunerCmaes
from adagio
package.predict_type
in AutoTuner
.TuneToken
in
Learner$param_set
and create a search space from it.TuningInstanceSingleCrit
and TuningInstanceSingleCrit
changed.store_benchmark_result
,
store_models
and check_values
in
AutoTuner
. store_tuning_instance
must be set
as a parameter during initialization.check_values
flag in
TuningInstanceSingleCrit
and
TuningInstanceMultiCrit
.bibtex
.saveRDS()
, serialize()
etc.Archive
is ArchiveTuning
now which stores
the benchmark result in $benchmark_result
. This change
removed the resample results from the archive but they can be still
accessed via the benchmark result.as.data.table(rr)$learner[[1]]$tuning_result
must be used
now.TuningInstance
is now
TuningInstanceSingleCrit
.
TuningInstanceMultiCrit
is still available for
multi-criteria tuning.trm()
and
trms()
instead of term()
and
terms()
.store_resample_result
flag in
TuningInstanceSingleCrit
and
TuningInstanceMultiCrit
TunerNLoptr
adds non-linear optimization from the
nloptr package.bbotk
logger now.check_values
flag in
TuningInstanceSingleCrit
and
TuningInstanceMultiCrit
.bbotk
package for basic
tuning objects. Terminator
classes now live in
bbotk
. As a consequence ObjectiveTuning
inherits from bbotk::Objective
, TuningInstance
from bbotk::OptimInstance
and Tuner
from
bbotk::Optimizer
TuningInstance$param_set
becomes
TuningInstance$search_space
to avoid confusion as the
param_set
usually contains the parameters that change the
behavior of an object.$optimize()
instead of
$tune()
AutoTuner
where a $clone()
was missing. Tuning results are unaffected, only stored models contained
wrong hyperparameter values (#223).These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.