The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Cluster Analysis

Sebastian Hönel

2020-09-15

In this vignette, we are evaluating neighborhood-search, network-centralities and vicinities using Bayesian estimators as implemented in mmb.

Vicinity Example

Using some gradient-coloring:

library(mmb)
library(Rtsne)
library(ggplot2)
library(ggpubr)

set.seed(1)
chooseSample <- 1

df <- iris[sample(rownames(iris)), ]
#df <- iris[,]
tsne <- Rtsne::Rtsne(df[, 1:4], check_duplicates = FALSE)
# Attach:
df$X <- tsne$Y[, 1]
df$Y <- tsne$Y[, 2]

# Let's pick one sample to calculate the vicinity for:
s <- df[chooseSample, 1:4]
vics <- mmb::vicinitiesForSample(doEcdf = FALSE, shiftAmount = 1,
  df = df[, 1:4], sampleFromDf = s, selectedFeatureNames = colnames(s),
  retainMinValues = 5)
#> Warning in value[[3L]](cond): Density estimation failed: Error in bw.SJ(x, method = "ste"): sample is too sparse to find TD
#> Warning in `[<-.data.frame`(`*tmp*`, names(centralities), , value = list(:
#> provided 7 variables to replace 1 variables

# Attach to df:
df$vics <- vics$vicinity
# TEMP TEMP TEMP: Discretize vics
mmbd <- mmb::discretizeVariableToRanges(df$vics, numRanges = length(levels(df$Species)))
df$vicsD <- sapply(df$vics, function(v) {
  for (i in 1:length(mmbd)) {
    r <- mmbd[[i]]
    if (v >= r[1] && v < r[2]) return(paste("R", i, sep = "_"))
  }
})

# Also, create a binary classification:
df$vicsB <- sapply(df$vics, function(v) {
  return(if (v > 0.1) "P" else "N")
})

# Additionally, compute the Euclidean-distance:
df$vicsE <- as.vector(philentropy::distance(df[, 1:4])[1,])
#> Metric: 'euclidean'; comparing: 150 vectors.
df$vicsE <- max(df$vicsE) - df$vicsE

pointCommon <- geom_point(shape=1, size=3, color="#000000", data=df[chooseSample,], mapping=aes(x=df[chooseSample,]$X, y=df[chooseSample,]$Y))


g1 <- ggplot(df, aes(x=X, y=Y, color=Species)) +
  geom_point() +
  pointCommon +
  stat_ellipse()

g2 <- ggplot(df, aes(x=X, y=Y)) +
  geom_point(aes(color=vics)) +
  #stat_ellipse() +
  scale_color_gradient(low="blue", high="red")

# TEMP TEMP TEMP
g3 <- ggplot(df, aes(x=X, y=Y, color=vicsD)) +
  geom_point() #+
  #stat_ellipse()

g4 <- ggplot(df, aes(x=X, y=Y, color=vicsB)) +
  geom_point() +
  stat_ellipse()

g5 <- ggplot(df, aes(x=X, y=Y)) +
  geom_point(aes(color=vicsE)) +
  #stat_ellipse() +
  scale_color_gradient(low="blue", high="red")

ggarrange(g1, g2, g3, g4, g5)
#> Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.