The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Ensemble Algorithms for Time Series Forecasting with Modeltime
A modeltime
extension that that implements
ensemble forecasting methods including model
averaging, weighted averaging, and stacking. Let’s go through a guided
tour to kick the tires on modeltime.ensemble
.
getting-started-with-modeltime-ensemble.R
We’ll perform the simplest type of forecasting: Using a simple average of the forecasted models.
Note that modeltime.ensemble
has capabilities for more
sophisticated model ensembling using:
Load libraries to complete this short tutorial.
We’ll split into a training and testing set.
splits <- time_series_split(m750, assess = "2 years", cumulative = TRUE)
splits %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = interactive)
getting-started-with-modeltime-ensemble.R
Once the data has been collected, we can move into modeling.
We’ll create a Feature Engineering Recipe that can be applied to the data to create features that machine learning models can key in on. This will be most useful for the Elastic Net (Model 3).
recipe_spec <- recipe(value ~ date, training(splits)) %>%
step_timeseries_signature(date) %>%
step_rm(matches("(.iso$)|(.xts$)")) %>%
step_normalize(matches("(index.num$)|(_year$)")) %>%
step_dummy(all_nominal()) %>%
step_fourier(date, K = 1, period = 12)
recipe_spec %>% prep() %>% juice()
#> # A tibble: 282 × 42
#> date value date_index.num date_year date_half date_quarter date_month
#> <date> <dbl> <dbl> <dbl> <int> <int> <int>
#> 1 1990-01-01 6370 -1.72 -1.66 1 1 1
#> 2 1990-02-01 6430 -1.71 -1.66 1 1 2
#> 3 1990-03-01 6520 -1.70 -1.66 1 1 3
#> 4 1990-04-01 6580 -1.69 -1.66 1 2 4
#> 5 1990-05-01 6620 -1.67 -1.66 1 2 5
#> 6 1990-06-01 6690 -1.66 -1.66 1 2 6
#> 7 1990-07-01 6000 -1.65 -1.66 2 3 7
#> 8 1990-08-01 5450 -1.64 -1.66 2 3 8
#> 9 1990-09-01 6480 -1.62 -1.66 2 3 9
#> 10 1990-10-01 6820 -1.61 -1.66 2 4 10
#> # ℹ 272 more rows
#> # ℹ 35 more variables: date_day <int>, date_hour <int>, date_minute <int>,
#> # date_second <int>, date_hour12 <int>, date_am.pm <int>, date_wday <int>,
#> # date_mday <int>, date_qday <int>, date_yday <int>, date_mweek <int>,
#> # date_week <int>, date_week2 <int>, date_week3 <int>, date_week4 <int>,
#> # date_mday7 <int>, date_month.lbl_01 <dbl>, date_month.lbl_02 <dbl>,
#> # date_month.lbl_03 <dbl>, date_month.lbl_04 <dbl>, …
getting-started-with-modeltime-ensemble.R
First, we’ll make an ARIMA model using Auto ARIMA.
model_spec_arima <- arima_reg() %>%
set_engine("auto_arima")
wflw_fit_arima <- workflow() %>%
add_model(model_spec_arima) %>%
add_recipe(recipe_spec %>% step_rm(all_predictors(), -date)) %>%
fit(training(splits))
getting-started-with-modeltime-ensemble.R
Next, we’ll make a Prophet Model.
model_spec_prophet <- prophet_reg() %>%
set_engine("prophet")
wflw_fit_prophet <- workflow() %>%
add_model(model_spec_prophet) %>%
add_recipe(recipe_spec %>% step_rm(all_predictors(), -date)) %>%
fit(training(splits))
getting-started-with-modeltime-ensemble.R
Third, we’ll make an Elastic Net Model using glmnet
.
model_spec_glmnet <- linear_reg(
mixture = 0.9,
penalty = 4.36e-6
) %>%
set_engine("glmnet")
wflw_fit_glmnet <- workflow() %>%
add_model(model_spec_glmnet) %>%
add_recipe(recipe_spec %>% step_rm(date)) %>%
fit(training(splits))
getting-started-with-modeltime-ensemble.R
With the models created, we can can create an Ensemble Average Model using a simple Mean Average.
Create a Modeltime Table using the modeltime
package.
#> # Modeltime Table
#> # A tibble: 3 × 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <workflow> ARIMA(0,1,1)(0,1,1)[12]
#> 2 2 <workflow> PROPHET
#> 3 3 <workflow> GLMNET
getting-started-with-modeltime-ensemble.R
Then use ensemble_average()
to turn that Modeltime Table
into a Modeltime Ensemble. This is a
fitted ensemble specification containing the ingredients to
forecast future data and be refitted on data sets using the 3
submodels.
#> ── Modeltime Ensemble ───────────────────────────────────────────
#> Ensemble of 3 Models (MEAN)
#>
#> # Modeltime Table
#> # A tibble: 3 × 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <workflow> ARIMA(0,1,1)(0,1,1)[12]
#> 2 2 <workflow> PROPHET
#> 3 3 <workflow> GLMNET
getting-started-with-modeltime-ensemble.R
To forecast, just follow the Modeltime Workflow.
# Calibration
calibration_tbl <- modeltime_table(
ensemble_fit
) %>%
modeltime_calibrate(testing(m750_splits))
# Forecast vs Test Set
calibration_tbl %>%
modeltime_forecast(
new_data = testing(m750_splits),
actual_data = m750
) %>%
plot_modeltime_forecast(.interactive = interactive)
getting-started-with-modeltime-ensemble.R
Once satisfied with our ensemble model, we can
modeltime_refit()
on the full data set and forecast forward
gaining the confidence intervals in the process.
refit_tbl <- calibration_tbl %>%
modeltime_refit(m750)
refit_tbl %>%
modeltime_forecast(
h = "2 years",
actual_data = m750
) %>%
plot_modeltime_forecast(.interactive = interactive)
getting-started-with-modeltime-ensemble.R
This was a very short tutorial on the simplest type of forecasting, but there’s a lot more to learn.
Become the forecasting expert for your organization
High-Performance Time Series Course
Time series is changing. Businesses now need 10,000+ time series forecasts every day. This is what I call a High-Performance Time Series Forecasting System (HPTSF) - Accurate, Robust, and Scalable Forecasting.
High-Performance Forecasting Systems will save companies by improving accuracy and scalability. Imagine what will happen to your career if you can provide your organization a “High-Performance Time Series Forecasting System” (HPTSF System).
I teach how to build a HPTFS System in my High-Performance Time Series Forecasting Course. You will learn:
Modeltime
- 30+ Models (Prophet, ARIMA, XGBoost, Random
Forest, & many more)GluonTS
(Competition Winners)Become the Time Series Expert for your organization.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.