The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
modsem
modsem
is
an R
-package for estimating interaction (i.e., moderation)
effects between latent variables in structural equation models (SEMs).
See https://www.modsem.org for a tutorial.
# From CRAN
install.packages("modsem")
# Latest version from GitHub
install.packages("devtools")
devtools::install_github("kss2k/modsem", build_vignettes = TRUE)
There are a number of approaches for estimating interaction effects
in SEM. In modsem()
, the method = "method"
argument allows you to choose which to use. Different approaches can be
categorized into two groups: Product Indicator (PI) and Distribution
Analytic (DA) approaches.
"ca"
= constrained approach (Algina & Moulder,
2001)
"uca"
= unconstrained approach (Marsh, 2004)"rca"
= residual centering approach (Little et al.,
2006)"dblcent"
= double centering approach (Marsh., 2013)
"pind"
= basic product indicator approach (not
recommended)"lms"
= The Latent Moderated Structural equations (LMS)
approach, see the vignette"qml"
= The Quasi Maximum Likelihood (QML) approach,
see the vignette"mplus"
library(modsem)
m1 <- '
# Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3
# Inner model
Y ~ X + Z + X:Z
'
# Double centering approach
est1_dca <- modsem(m1, oneInt)
summary(est1_dca)
# Constrained approach
est1_ca <- modsem(m1, oneInt, method = "ca")
summary(est1_ca)
# QML approach
est1_qml <- modsem(m1, oneInt, method = "qml")
summary(est1_qml, standardized = TRUE)
# LMS approach
est1_lms <- modsem(m1, oneInt, method = "lms")
summary(est1_lms)
tpb <- "
# Outer Model (Based on Hagger et al., 2007)
ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2
# Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ PBC:INT
"
# double centering approach
est_tpb_dca <- modsem(tpb, data = TPB, method = "dblcent")
summary(est_tpb_dca)
# Constrained approach using Wrigths path tracing rules for generating
# the appropriate constraints
est_tpb_ca <- modsem(tpb, data = TPB, method = "ca")
summary(est_tpb_ca)
# LMS approach
est_tpb_lms <- modsem(tpb, data = TPB, method = "lms")
summary(est_tpb_lms, standardized = TRUE)
# QML approach
est_tpb_qml <- modsem(tpb, data = TPB, method = "qml")
summary(est_tpb_qml, standardized = TRUE)
est2 <- modsem('y1 ~ x1 + z1 + x1:z1', data = oneInt, method = "pind")
summary(est2)
m3 <- '
# Outer Model
X =~ x1 + x2 +x3
Y =~ y1 + y2 + y3
# Inner model
Y ~ X + z1 + X:z1
'
est3 <- modsem(m3, oneInt, method = "pind")
summary(est3)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.