The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(modsem)
Quadratic effects are essentially a special case of interaction
effects—where a variable interacts with itself. As such, all of the
methods in modsem
can also be used to estimate quadratic
effects.
Below is a simple example using the LMS
approach.
library(modsem)
<- '
m1 # Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3
# Inner model
Y ~ X + Z + Z:X + X:X
'
<- modsem(m1, data = oneInt, method = "lms")
est1Lms summary(est1Lms)
In this example, we have a simple model with two quadratic effects
and one interaction effect. We estimate the model using both the
QML
and double-centering approaches, with data from a
subset of the PISA 2006 dataset.
<- '
m2 ENJ =~ enjoy1 + enjoy2 + enjoy3 + enjoy4 + enjoy5
CAREER =~ career1 + career2 + career3 + career4
SC =~ academic1 + academic2 + academic3 + academic4 + academic5 + academic6
CAREER ~ ENJ + SC + ENJ:ENJ + SC:SC + ENJ:SC
'
<- modsem(m2, data = jordan)
est2Dblcent <- modsem(m2, data = jordan, method = "qml")
est2Qml summary(est2Qml)
Note: The other approaches (e.g., LMS
and constrained methods) can also be used but may be slower depending on
the number of interaction effects, especially for the LMS
and constrained approaches.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.