The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Trajectory analysis of Turkey vultures

Retrieve data

library(move2)
vulture_data <-
  movebank_download_study("Turkey vultures in North and South America")
vulture_data
#> A <move2> with `track_id_column` "individual_local_identifier" and `time_column`
#> "timestamp"
#> Containing 19 tracks lasting on average 1083 days in a
#> Simple feature collection with 215719 features and 6 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -123.9255 ymin: -39.8214 xmax: -48.5788 ymax: 54.01817
#> Geodetic CRS:  WGS 84
#> # A tibble: 215,719 × 7
#>   sensor_type_id individual_local_ident…¹ manually_marked_outl…² timestamp          
#>          <int64> <fct>                    <lgl>                  <dttm>             
#> 1            653 Irma                     FALSE                  2004-09-06 17:00:00
#> 2            653 Irma                     FALSE                  2004-09-06 18:00:00
#> 3            653 Irma                     FALSE                  2004-09-06 19:00:00
#> 4            653 Irma                     FALSE                  2004-09-06 20:00:00
#> 5            653 Irma                     FALSE                  2004-09-07 00:00:00
#> # ℹ 215,714 more rows
#> # ℹ abbreviated names: ¹​individual_local_identifier, ²​manually_marked_outlier
#> # ℹ 3 more variables: event_id <int64>, visible <lgl>, geometry <POINT [°]>
#> First 5 track features:
#> # A tibble: 19 × 54
#>   deployment_id   tag_id individual_id animal_life_stage animal_mass attachment_type
#>         <int64>  <int64>       <int64> <fct>                     [g] <fct>          
#> 1      17225120 16883951      17002744 adult                    2372 harness        
#> 2      17225134 16883951      17002745 adult                    1951 harness        
#> 3      17225131 16883928      17002732 adult                    2012 harness        
#> 4      17225133 16883937      17002737 adult                    2108 harness        
#> 5      17225122 16883967      17002753 adult                      NA harness        
#> # ℹ 14 more rows
#> # ℹ 48 more variables: deployment_comments <chr>, deploy_off_timestamp <dttm>,
#> #   deploy_on_timestamp <dttm>, duty_cycle <chr>,
#> #   deployment_local_identifier <fct>, …

In this case some tracks have very long time gaps, to prevent distant points to be connected by a line we split those tracks by creating a new id.

library(dplyr, quietly = TRUE)
library(ggplot2, quietly = TRUE)
library(rnaturalearth, quietly = TRUE)
library(units, quietly = TRUE)
vulture_lines <- vulture_data %>%
  mutate_track_data(name = individual_local_identifier) %>%
  mutate(
    large_gaps = !(mt_time_lags(.) < set_units(1500, "h") |
      is.na(mt_time_lags(.))),
    track_sub_id = cumsum(lag(large_gaps, default = FALSE)),
    new_track_id = paste(mt_track_id(.), track_sub_id)
  ) %>%
  mt_set_track_id("new_track_id") %>%
  mt_track_lines()
ggplot() +
  geom_sf(data = ne_coastline(returnclass = "sf", 50)) +
  theme_linedraw() +
  geom_sf(
    data = vulture_lines,
    aes(color = name)
  ) +
  coord_sf(
    crs = sf::st_crs("+proj=aeqd +lon_0=-83 +lat_0=8 +units=km"),
    xlim = c(-3500, 3800), ylim = c(-4980, 4900)
  )

A map showing the trajectories of vultures using coast lines as a reference

Categorize seasons

library(magrittr, quietly = TRUE)
#> 
#> Attaching package: 'magrittr'
#> The following object is masked from 'package:raster':
#> 
#>     extract
library(lubridate, quietly = TRUE)
vulture_data <- vulture_data %>% mutate(
  month = month(mt_time(), label = TRUE, abbr = FALSE),
  season = recode_factor(month,
    January = "Wintering", February = "Wintering",
    March = "Wintering", April = "North migration",
    May = "North migration", June = "Breeding",
    July = "Breeding", August = "Breeding",
    September = "South migration", October = "South migration",
    November = "Wintering", December = "Wintering"
  ),
  # Here we change season to NA if the next location is either from
  # a different track or season
  season = if_else(season == lead(season, 1) &
    mt_track_id() == lead(mt_track_id(), 1),
  season, NA
  )
)

Annotate speed and azimuth to the trajectory.

vulture_data <- vulture_data %>% mutate(azimuth = mt_azimuth(.), speed = mt_speed(.))

Seasonal distribution per individual

library(circular, quietly = TRUE)
#> 
#> Attaching package: 'circular'
#> The following objects are masked from 'package:stats':
#> 
#>     sd, var
vulture_azimuth_distributions <- vulture_data %>%
  filter(speed > set_units(2, "m/s"), !is.na(season)) %>%
  group_by(season, track_id = mt_track_id()) %>%
  filter(n() > 50) %>%
  summarise(azimuth_distribution = list(density(
    as.circular(
      drop_units(set_units(
        azimuth,
        "degrees"
      )),
      units = "degrees",
      modulo = "asis",
      zero = 0,
      template = "geographic", rotation = "clock", type = "angles"
    ),
    bw = 180, kernel = "vonmises"
  )))
#> `summarise()` has grouped output by 'season'. You can override using the `.groups`
#> argument.

# Load purrr for map function
library(purrr, quietly = TRUE)
#> 
#> Attaching package: 'purrr'
#> The following object is masked from 'package:magrittr':
#> 
#>     set_names
# Load tidy r for unnest function
library(tidyr, quietly = TRUE)
#> 
#> Attaching package: 'tidyr'
#> The following object is masked from 'package:magrittr':
#> 
#>     extract
#> The following object is masked from 'package:raster':
#> 
#>     extract
vulture_azimuth_distributions %>%
  mutate(
    x = map(azimuth_distribution, ~ .$x),
    y = map(azimuth_distribution, ~ .$y)
  ) %>%
  select(-azimuth_distribution) %>%
  unnest(c(x, y)) %>%
  ggplot() +
  geom_path(aes(x = x, y = y, color = season)) +
  coord_polar(start = pi / 2) +
  theme_linedraw() +
  facet_wrap(~ factor(track_id)) +
  scale_x_continuous(
    name = NULL, breaks = (-2:1) * 90,
    labels = c("S", "W", "N", "E")
  ) +
  scale_y_continuous(name = NULL, limits = c(-0.8, 1.0), expand = c(0L, 0L)) +
  labs(color = "Season")

A plot of the azimuths of the tracks split out per season and individual

Individual trajectory

leo <- vulture_data |>
  filter_track_data(individual_local_identifier == "Leo") |>
  mutate(speed_categorical = cut(speed, breaks = c(2, 5, 10, 15, 35)))
leo |> ggplot(aes(x = azimuth, y = speed)) +
  geom_point() +
  scale_x_units(unit = "degrees", breaks = -2:2 * 90, expand = c(0L, 0L)) +
  theme_linedraw()
#> Warning: Removed 6683 rows containing missing values or values outside the scale range
#> (`geom_point()`).

A plot exploring the relation between direction and speed for one track

leo |>
  filter(speed > set_units(2L, "m/s"), !is.na(season)) |>
  ggplot() +
  coord_polar(start = pi) +
  geom_histogram(
    aes(
      x = set_units(azimuth, "degrees"),
      fill = speed_categorical
    ),
    breaks = set_units(seq(-180L, 180L, by = 10L), "degrees"),
    position = position_stack(reverse = TRUE)
  ) +
  scale_x_units(
    name = NULL,
    limits = set_units(c(-180L, 180L), "degrees"),
    breaks = (-2L:2L) * 90L
  ) +
  facet_wrap(~season) +
  scale_fill_ordinal("Speed") +
  theme_linedraw()

Plot that visualizes the speed and directions per season for one individual

Plot turn angle distribution.

pi_r <- set_units(pi, "rad")
leo %>%
  mutate(turnangle = mt_turnangle(.)) %>%
  filter(speed > set_units(2L, "m/s"), lag(speed, 1L) > set_units(2L, "m/s")) %>%
  ggplot() +
  geom_histogram(
    aes(
      x = turnangle,
      fill = speed_categorical
    ),
    position = position_stack(reverse = TRUE)
  ) +
  scale_fill_ordinal("Speed") +
  coord_polar(start = pi) +
  scale_x_units(limits = c(-pi_r, pi_r), name = NULL) +
  scale_y_continuous(limits = c(-500L, 650L), breaks = c(0L, 250L, 500L)) +
  theme_linedraw()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Plot of the turning angle distribution

Net displacement

Here we visualize the distance to the first location of each trajectory.

vulture_data <- vulture_data %>%
  group_by(mt_track_id()) %>%
  mutate(displacement = c(st_distance(
    !!!syms(attr(., "sf_column")),
    (!!!syms(attr(., "sf_column")))[row_number() == 1]
  )))

vulture_data %>% ggplot() +
  geom_line(aes(
    x = timestamp,
    y = set_units(displacement, "km"),
    color = individual_local_identifier
  )) +
  ylab("Distance from start") +
  theme_linedraw()

Plot of the net squared displacement overtime per individual

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.