The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

NOTE: This R package focuses on the implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods and classical multivariate statistical tools.

Quick demo

Fitting a PLS model:

library(mvdalab)
data(Penta)
mod1 <- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1], 
               ncomp = 3, method = "bidiagpls", 
               validation = "oob")

summary(mod1)
#> Call:
#> 
#> plsFit(formula = log.RAI ~ ., ncomp = 3, data = Penta[, -1], 
#>     method = "bidiagpls", scale = TRUE, 
#>     validation = "oob")
#> 
#> Coefficients:
#>        Estimate Bootstrap Error   't value'         bias 'bias t value'
#> L3  0.438131130      0.07813105  5.60764388 -0.056287765    -0.72042756
#> S3 -0.339839340      0.08368706 -4.06083517  0.044477379     0.53147262
#> P1 -0.210181974      0.06071820 -3.46159762  0.057955814     0.95450482
#> S1 -0.135884870      0.06997010 -1.94204192  0.019907955     0.28452089
#> P3  0.111249534      0.06854336  1.62305337  0.034862926     0.50862586
#> S2  0.089752422      0.04701730  1.90892350  0.006892843     0.14660228
#> L2  0.071367951      0.04526160  1.57678793 -0.019359275    -0.42771960
#> L4  0.069951677      0.07232330  0.96720806 -0.004522244    -0.06252818
#> L5  0.035696148      0.04552429  0.78411217  0.008591990     0.18873419
#> P4 -0.028238597      0.05462905 -0.51691543 -0.020000349    -0.36611199
#> P2 -0.025167765      0.06283351 -0.40054683 -0.012729431    -0.20258984
#> S4  0.020226747      0.06658432  0.30377644 -0.037592328    -0.56458231
#> L1  0.017465764      0.06489465  0.26914025 -0.006988723    -0.10769335
#> S5  0.010701880      0.04456740  0.24012801 -0.004024037    -0.09029106
#> P5 -0.002811084      0.04681625 -0.06004504  0.003525576     0.07530667
#> 
#> Fit Summary: 
#> 
#> Number of objects = 30
#> Number of predictor variables = 15
#> Method: bidiagpls
#> No. of bootstrap samples =  1000
#> Number of components considered
#> in above parameter estimates = 3
#> R2X = 0.228 0.389 0.485
#> R2Y = 0.691 0.824 0.874
#> Out-of-Bag R2 (per component) = 0.446 0.458 0.354
#> Out-of-Bag PRESS (per component) = 4.335 3.902 4.455
#> Out-of-Bag MSPRESS.632 (per component) = 0.335 0.263 0.286
#> Out-of-Bag RMSPRESS.632 (per component) = 0.578 0.512 0.535

PCA via NIPALS.

library(mvdalab)
my.nipals <- pca.nipals(iris[, 1:4], ncomps = 4, tol = 1e-08)
names(my.nipals)
#> [1] "Loadings"      "Scores"        "Loading.Space" "Score.Space"

my.nipals$Loadings
#>                     [,1]        [,2]        [,3]       [,4]
#> Sepal.Length  0.36138514  0.65659919 -0.58203416  0.3154592
#> Sepal.Width  -0.08452411  0.73015136  0.59793829 -0.3196944
#> Petal.Length  0.85667099 -0.17337204  0.07625627 -0.4798353
#> Petal.Width   0.35828937 -0.07548926  0.54579393  0.7536837
svd(scale(iris[, 1:4], scale = FALSE))$v
#>             [,1]        [,2]        [,3]       [,4]
#> [1,]  0.36138659 -0.65658877  0.58202985  0.3154872
#> [2,] -0.08452251 -0.73016143 -0.59791083 -0.3197231
#> [3,]  0.85667061  0.17337266 -0.07623608 -0.4798390
#> [4,]  0.35828920  0.07548102 -0.54583143  0.7536574

Traditional Multivariate Mean Vector Comparison.

library(mvdalab)
data(College)
dat1 <- College
#Generate a 'fake' difference of 15 units
dat2 <- College + matrix(rnorm(nrow(dat1) * ncol(dat1), mean = 15), 
        nrow = nrow(dat1), ncol = ncol(dat1))

Comparison <- MVComp(dat1, dat2, level = .95)
Comparison
#>   lower 95 % confidence upper 95 % confidence    Significance
#> 1             -47.66009              17.95686 Not Significant
#> 2             -19.69886             -10.07013     Significant
#> 3             -16.88621             -12.75947     Significant

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.