The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

mvoutlier: Multivariate Outlier Detection Based on Robust Methods

Various methods for multivariate outlier detection: arw, a Mahalanobis-type method with an adaptive outlier cutoff value; locout, a method incorporating local neighborhood; pcout, a method for high-dimensional data; mvoutlier.CoDa, a method for compositional data. References are provided in the corresponding help files.

Version: 2.1.1
Depends: sgeostat, R (≥ 3.1)
Imports: robustbase
Published: 2021-07-30
DOI: 10.32614/CRAN.package.mvoutlier
Author: Peter Filzmoser and Moritz Gschwandtner
Maintainer: P. Filzmoser <P.Filzmoser at tuwien.ac.at>
License: GPL (≥ 3)
URL: http://cstat.tuwien.ac.at/filz/
NeedsCompilation: no
In views: Robust
CRAN checks: mvoutlier results

Documentation:

Reference manual: mvoutlier.pdf

Downloads:

Package source: mvoutlier_2.1.1.tar.gz
Windows binaries: r-devel: mvoutlier_2.1.1.zip, r-release: mvoutlier_2.1.1.zip, r-oldrel: mvoutlier_2.1.1.zip
macOS binaries: r-release (arm64): mvoutlier_2.1.1.tgz, r-oldrel (arm64): mvoutlier_2.1.1.tgz, r-release (x86_64): mvoutlier_2.1.1.tgz, r-oldrel (x86_64): mvoutlier_2.1.1.tgz
Old sources: mvoutlier archive

Reverse dependencies:

Reverse imports: cellity, DFA.CANCOR, GateFinder
Reverse suggests: ChemoSpecUtils, fPortfolio, GWmodel, mplot, shotGroups
Reverse enhances: cluster

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mvoutlier to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.