The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
ncvreg 3.15.0
- New: boot_ncvreg() function to obtain confidence intervals
- New: assign_fold() function to assign folds for CV
- Change: seed is no longer an argument to CV functions; use
assign_fold() instead
ncvreg 3.14.3
- Internal: Now using R_Calloc for R_USE_STRICT_R_HEADERS
compatibility
ncvreg 3.14.2
- Documentation: Lots of formatting fixes to the documentation
ncvreg 3.14.1
- Fixed: cv.ncvreg(), cv.ncvsurv() no longer affect seed in global
environment if seed is specified
ncvreg 3.14.0
- New: residuals() method
- New: std() can now be applied to new data
- New: summary.ncvreg() now offers sort option; fixes #13
- Change: fir() deprecated
- Change: local_mfdr() allows user to specify sigma; also uses CV if
called with cv object
- Fixed: Manual color palettes now recycled correctly; fixes #40;
thank you to Logan Harris for pointing this out
- Fixed: mfdr now works for Poisson
- Documentation: Adding vignettes on other CV criteria, adaptive
rescaling
- Documentation: References reformatted, URLs updated, DOIs added
- Internal: C code for binomial, poisson now unified under glm
structure
- Internal: Now using roxygen2 for all documentation
ncvreg 3.13.0
- New: Options ‘xtx’ and ‘r’ for ncvfit()
- Internal: cv.ncvreg() now uses less memory (returnX off)
- Internal: Better error handling if a matrix is supplied for y
- Fixed: AUC() now compatible with survival 3.2.10
ncvreg 3.12.0
- New: ncvfit(), a raw API to the ncvreg solver with full control over
standardization, etc.
- Changed: ncvreg and ncvsurv now issue warning for non-pathwise
usage
- Internal: Now using tinytest for unit testing
- Fixed: Memory leak in cox-dh; resolves #20
ncvreg 3.11.2
- New: std() now works on integer matrices and numeric vectors
- Internal: Lots of internal changes for cleaner, more reliable
code
- New version numbering system
ncvreg 3.11-1
- Fixed: Leave-one-out cross-validation now works correctly for
logistic regression
- Documentation: Added documentation (online) for local mfdr
- Documentation: Fixed some broken links and typos
ncvreg 3.11-0
- Change: returnX now turned on by default if X < 100 Mb (used to
be 10 Mb)
- Change: summary.ncvreg now based solely on local mfdr
- Change: Loss functions now consistently defined as deviance for all
types of models
- Change: R^2 now consistently uses the Cox-Snell definition for all
types of models
- Change: cv.ncvreg and cv.ncvsurv now return fold assignments
- Fixed: Can now pass fold assignments to cv.ncvsurv
- Documentation: Lots of updates
- Documentation: vignette now html (used to be pdf)
- Documentation: pkgdown website
ncvreg 3.10-0
- New: summary.ncvreg and summary.ncvsurv now report tables of
inference for each feature based on local mFDRs
- New: Option to specify fold assignments in cv.ncvsurv
- New: CVSE now calculated for Cox models, with option of quick or
bootstrap
- Change: returnX now turned on by default if X < 10 Mb
- Change: cv.ncvsurv now balances censoring across fold
assignments
- Change: All data sets now follow Data\(X,
Data\)y convention
- Deprecated: cv.ind argument to cv.ncvreg is now called fold
- Portability: Fixed C99 flag
- Internal: Fixed & v && C issue
ncvreg 3.9-1
- Change: Poission now returns linear predictors, like other
families
- Internal: Changing PROTECT/UNPROTECT to conform to new coding
standards
ncvreg 3.9-0
- Deprecated: fir() is now called mfdr()
- Change: mfdr for Cox and logistic models no longer use the
simplistic approximation of 3.7-0. These calculations are much more
accurate, but more computationally intensive, so these are carried out
in C now.
- Change: mfdr for Cox and logistic models requires the model matrix X
now.
- Internal: Registration of native routines
- Fixed: std() wasn’t matching up column names if one column got
dropped
ncvreg 3.8-0
- Change: max.iter now based on total number of iterations for entire
path
- Fixed: Bug when fitting Cox model for single lambda
- Fixed: std no longer drops dimnames
ncvreg 3.7-1
- Fixed: Various fixes for fir function
- Fixed: Bug with high dimensional (p > n) Cox models
ncvreg 3.7-0
- New: fir extended to Cox and logistic regression
- New: summary function for ncvreg and ncvsurv objects
- Change: Convergence criterion now based on RMSD of linear
predictors
- Change: Additional options and improvements to plot.fir
- Change: Better display of fir objects
- Internal: Improved efficiency for Cox models (linear predictor
calculation now occurs in C, not R)
- Internal: Reorganized testing suite
- Fixed: lamNames with single lambda passed
- Fixed: loss wasn’t being returned for gaussian if failure to
converge
- Fixed: perm.ncvreg would return NAs when models were saturated
ncvreg 3.6-0
- New: Exports std() function for standardizing a design matrix
- Fixed: In predict.cv.ncvsurv
- Documentation: Added ‘quick start’ vignette
- Internal: Improved efficiency for cox models (avoids recalculating
linear predictors)
- Internal: Reorganized testing suite
- Internal: ‘survival’ package now used for setupLambda in Cox
models
ncvreg 3.5-2
- New: Added user interrupt checking
- Fixed: In ncvsurv with integer penalty factors
- Fixed: Rare numerical accuracy bug in cv fold assignments
- Fixed: LOOCV bug introduced by bias-correction feature
ncvreg 3.5-1
- New: Compute bias correction for CV error; this is an experimental
feature at this point and may change in the future
- Internal: Replaced AUC function with more efficient version using
survival package
- Fixed: Penalty.factor for cv.ncvsurv when some columns may be
degenerate
ncvreg 3.5-0
- New: Added function AUC() to calculate cross-validated AUC values
for ncvsurv models.
- New: Option to return fitted values from cross-validation folds
(returnY=TRUE) for cv.ncvreg and cv.ncvsurv.
- Change: New method for calculation of cross-validation loss in
cv.ncvsurv.
- Change: More accurate calculation for convexMin in the presence of
unpenalized variables
- Fixed: Factor-valued y with CV logistic regression
- Internal: Substantial efficiency improvements throughout for Cox
models. Coordinate descent redesigned to work in O(n) instead of O(n^2)
operations, and R code redesigned at various points to avoid the
creation of any n x n matrices when fitting and cross-validating Cox
regression models.
- Internal: Better double/int type checking for penalty.factor
- Internal: Modifications to NAMESPACE for compatibility with R
3.3.
ncvreg 3.4-0
- New: Expanded predict function for Cox models. predict.ncvsurv now
estimates subject-specific survival functions and medians.
- New: Plot method for survival curves.
- New: Option in perm.ncvreg to permute residuals for linear
regression
- New: permres function to estimate false inclusion rates based on
residuals at a specific value of lambda
- New: Some support for factors in X, y. It is still recommended that
users convert X to a numeric matrix prior to fitting in order to ensure
that predict() methods work properly, but ncvreg will now allow you to
pass a data frame with factors and handle things appropriately.
- Fixed: In predict.ncvsurv, when applied to models with saturation
issues.
- Fixed: Small memory leak in ncvsurv.
ncvreg 3.3-0
- New: Support for fitting survival models added (ncvsurv), along with
predict, plot, and cv.ncvsurv support functions. Currently, Cox models
are the only type of survival model implemented.
- New: Parallelization support for cv.ncvreg (with help from Grant
Brown)
- Fixed: In cv.ncvreg, when attempting to use leave-one-out
cross-validation (thank you to Cajo ter Braak for pointing this
out)
- Removed: ncvreg_fit; it may return in a future version of the
package.
ncvreg 3.2-0
- New: Automatically coerces X to matrix and y to numeric if
possible
- New: Made ncvreg_fit more user-friendly: user no longer has to
specify lambda, works with coef, predict, plot, etc.
- Changed: Modified order of arguments for predict so that ‘type’
comes before ‘lambda’ and ‘which’
- Fixed: Bug in convexMin when used with penalty.factor option
- Internal: Updated algorithm to ‘hybrid’ strong/active cycling
ncvreg 3.1-0
- New: Added support for Poisson regression
- Fixed: Bug in ncvreg_fit that could arise when fitting a model
without an intercept
- Fixed: Bug in cv.ncvreg with univariate regression (thank you to
Diego Franco Saldana for pointing this out)
ncvreg 3.0-0
- New: Added fir, perm.ncvreg, and plot.fir functions for the purposes
of estimating and displaying false inclusion rates; these are likely to
evolve over the next few months
- Fixed: Bug in cv.ncvreg for user-specified lambda sequence
- Internal: Revised algorithms to incorporate targeted cycling based
on strong rules
- Internal: Moved standardization to C
- Internal: Moved calculation of lambda sequence to C
- Internal: As a result of the above three changes, ncvreg now runs
much faster for large p
ncvreg 2.7-0
- New: “vars” and “nvars” options to predict function.
- Changed: Modified look of summary(cvfit) output.
- Internal: Modified details of .Call interface.
ncvreg 2.6-0
- New: Introduction of function ncvreg_fit for programmers who want to
access the internal C routines of ncvreg, bypassing internal
standardization and processing
- New: Added vertical.line and col options to plot.cv.ncvreg
- Fixed: Bug in axis annotations with plot.cv.ncvreg when model is
saturated
- Fixed: Deviance calculation; would return NaN if fitted
probabilities of 0 or 1 occurred for binomial outcomes
- Fixed: NAMESPACE for coef.cv.ncvreg and predict.cv.ncvreg
- Internal: .Call now used instead of .C
ncvreg 2.5-0
- New: Options in plot.cv.ncvreg to plot estimates of r-squared,
signal-to-noise ratio, scale parameter, and prediction error in addition
to cross-validation error (deviance)
- New: Summary method for cv.ncvreg which displays the above
information at lambda.min, the value of lambda minimizing the
cross-validation error
- Fixed: Bug in cv.ncvreg with user-defined lambda values.
ncvreg 2.4-0
- New: penalty.factor option
- New: coef and predict methods now accept lambda as argument
- New: logLik method (which in turn allows AIC/BIC)
- Changed: cv.grpreg now returns full data fit as well as CV
errors
- Fixed: Error in definition/calculation of cross-validation error and
standard error
- Fixed: Bug that arose if lambda was scalar (instead of a
vector)
- Fixed: Bug in cv.ncvreg for linear regression – cross-validation was
being carried out deterministically (Thank you to Brenton Kenkel for
pointing this out)
- Fixed: Intercept for logistic regression was not being calculated
for lamda=0
- Internal: standardization more efficient
- Internal: cdfit_ now returns loss (RSS for gaussian, deviance for
binomial)
ncvreg 2.3-2
- Documentation: Fixed formatting error in citation.
ncvreg 2.3-1
- Changed: plot.ncvreg: Made the passing of arguments for plot.ncvreg
more flexible, so that user can pass options concerning both the plot
and the lines
- Changed: plot.ncvreg: Changed some of the default settings with
respect to color (hcl instead of hsv) and line width
ncvreg 2.3
- Documentation: Updated documentation for cv.ncvreg.Rd, which no
longer agreed with the function usage (this was an oversight in the
release of version 2.2)
ncvreg 2.2
- New: plot.cv.ncvreg for plotting cv.ncvreg objects
- Changed: Divorced cross-validation from fitting in cv.ncvreg. From a
user perspective, this increases flexibility, although obtaining the
model with CV-chosen regularization parameter now requires two calls (to
ncvreg and cv.ncvreg). The functions, however, are logically separate
and involve entirely separate methods.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.