The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

neonstore

R build status Codecov test coverage CRAN status R-CMD-check

neonstore provides quick access and persistent storage of NEON data tables. neonstore emphasizes simplicity and a clean data provenance trail, see Provenance section below.

Installation

Install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("cboettig/neonstore")

Quickstart

library(neonstore)
library(tidyverse)

Discover data products of interest:

products <- neon_products()
products |>
  filter(str_detect(keywords, "bird")) |> 
  select(productName, productCode)
#> # A tibble: 1 × 2
#>   productName                    productCode  
#>   <chr>                          <chr>        
#> 1 Breeding landbird point counts DP1.10003.001

You may also prefer to explore the NEON Data Portal website interactively.

Download-based workflow

Once we have identified a data product code, we can download all associated data files, e.g. in the bird survey data. Optionally, we can restrict this download to a set of sites or date ranges of interest, (see function documentation for details).

neon_download("DP1.10003.001")
#>   comparing hashes against local file index...
#>   updating release manifest...

View your store of NEON products:

neon_index()
#> # A tibble: 1,214 × 15
#>    product  site  table type  ext   month timestamp           horizontalPosition
#>    <chr>    <chr> <chr> <chr> <chr> <chr> <dttm>                           <dbl>
#>  1 DP1.100… BART  brd_… basic csv   2015… 2022-11-22 18:06:13                 NA
#>  2 DP1.100… BART  brd_… basic csv   2016… 2022-11-22 18:28:29                 NA
#>  3 DP1.100… BART  brd_… basic csv   2017… 2022-11-22 18:51:55                 NA
#>  4 DP1.100… BART  brd_… basic csv   2018… 2022-11-28 18:02:03                 NA
#>  5 DP1.100… BART  brd_… basic csv   2019… 2022-11-28 18:54:56                 NA
#>  6 DP1.100… BART  brd_… basic csv   2020… 2022-11-28 21:00:18                 NA
#>  7 DP1.100… BART  brd_… basic csv   2020… 2022-11-28 21:57:32                 NA
#>  8 DP1.100… BART  brd_… basic csv   2021… 2022-11-29 23:48:16                 NA
#>  9 DP1.100… BART  brd_… basic csv   2022… 2023-12-29 05:32:56                 NA
#> 10 DP1.100… BART  brd_… basic csv   2015… 2022-11-22 18:06:13                 NA
#> # ℹ 1,204 more rows
#> # ℹ 7 more variables: verticalPosition <dbl>, samplingInterval <chr>,
#> #   date_range <chr>, path <chr>, md5 <chr>, crc32 <chr>, release <chr>

These files will persist between sessions, so you only need to download once or to retrieve updates. neon_index() can take arguments to filter by product or pattern (regular expression) in table name, e.g. neon_index(table = "brd").

Database backend

neonstore now supports a backend relation database as well. Import data from the raw downloaded files using neon_store():

neon_store(product = "DP1.10003.001")
#>   importing brd_countdata-basic-DP1.10003.001...
#>   importing brd_perpoint-basic-DP1.10003.001...

Access an imported table using neon_table() instead of neon_read():

neon_table("brd_countdata")
#> # A tibble: 289,038 × 24
#>    uid                     namedLocation domainID siteID plotID plotType pointID
#>    <chr>                   <chr>         <chr>    <chr>  <chr>  <chr>    <chr>  
#>  1 f7fa2f5a-5b07-4ac0-83b… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  2 84c1e17a-945d-46fa-a1f… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  3 4063e302-4b9a-45ff-9a6… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  4 53e2c631-d1e1-4156-b1f… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  5 51cdba5c-64a9-4abf-aff… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  6 d742982a-1052-4d3f-bb6… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  7 2c86f910-5cba-4dc0-adf… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  8 dbf436ae-89af-46ac-980… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#>  9 da7d0c2a-6d06-4748-a21… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#> 10 23938ad7-76fc-4e48-a67… TREE_022.bas… D05      TREE   TREE_… distrib… 21     
#> # ℹ 289,028 more rows
#> # ℹ 17 more variables: startDate <dttm>, eventID <chr>, pointCountMinute <dbl>,
#> #   targetTaxaPresent <chr>, taxonID <chr>, scientificName <chr>,
#> #   taxonRank <chr>, vernacularName <chr>, observerDistance <dbl>,
#> #   detectionMethod <chr>, visualConfirmation <chr>, sexOrAge <chr>,
#> #   clusterSize <dbl>, clusterCode <chr>, identifiedBy <chr>,
#> #   identificationHistoryID <chr>, file <chr>

Note that we need to include the product name in the table name when accessing the database, as table names alone may not be unique. RStudio users can also list and explore all tables interactively in the Connections pane in RStudio using the function neon_pane().

Larger-than-RAM data

When working across data from many sites or years simultaneously, it is easy for data to be too big for R to fit into working memory. This is especially true when working with sensor data. neonstore makes it easy to work with such data using dplyr-operations though. Just include the option lazy = TRUE, and most dplyr operations will execute quickly on disk instead (by leveraging the dbplyr backend and the power of the duckdb database).

brd <- neon_table("brd_countdata", lazy=TRUE)
# unique species per site?
brd |> 
  distinct(siteID, scientificName) |> 
  count(siteID, sort=TRUE) |> 
  collect()
#> # A tibble: 47 × 2
#>    siteID     n
#>    <chr>  <dbl>
#>  1 WOOD     154
#>  2 CLBJ     134
#>  3 UNDE     124
#>  4 DCFS     123
#>  5 OAES     120
#>  6 KONZ     120
#>  7 SJER     117
#>  8 ORNL     116
#>  9 HARV     111
#> 10 SRER     111
#> # ℹ 37 more rows

Use the function collect() at the end of a chain of dplyr functions to bring the resulting data into R.

NEW: Cloud-based workflow

It is now possible to access data directly from NEON’s cloud storage system without downloading. (Note: this still must ping the NEON API to obtain the most recent list of files, and this list is subject to rate limits). Like the local database approach, this strategy works for larger-than-RAM data, and can be substantially faster than downloading. However, if you work frequently with the same data products and have ample disk space available, you will find the one-time wait for downloading to be faster.

brd <- neon_cloud("brd_countdata", product="DP1.10003.001")

brd |> 
  distinct(siteID, scientificName) |> 
  count(siteID, sort=TRUE) |> 
  collect()
#> # A tibble: 47 × 2
#>    siteID     n
#>    <chr>  <dbl>
#>  1 WOOD     154
#>  2 CLBJ     134
#>  3 UNDE     124
#>  4 DCFS     123
#>  5 OAES     120
#>  6 KONZ     120
#>  7 SJER     117
#>  8 ORNL     116
#>  9 HARV     111
#> 10 SRER     111
#> # ℹ 37 more rows

Note on API limits

If neon_download() exceeds the API request limit (with or without the token), neonstore will simply pause for the required amount of time to avoid rate-limit-based errors.

The NEON API now rate-limits requests.. Using a personal token will increase the number of requests you can make before encountering this delay. See link for directions on registering for a token. Then pass this token in .token argument of neon_download(), or for frequent use, add this token as an environmental variable, NEON_DATA to your local .Renviron file in your user’s home directory. neon_download() must first query each the API of each NEON site which collects that product, for each month the product is collected.

(It would be much more efficient on the NEON server if the API could take queries of the from /data/<product>/<site>, and pool the results, rather than require each month of sampling separately!)

Non-stacking files and low-level interface

At it’s core, neonstore is simply a mechanism to download files from the NEON API. While the .csv files from the Observation Systems (OS, e.g. bird count surveys), and Instrument Systems (e.g. aquatic sensors) are typically stacked into large tables, other products, such as the .laz and .tif images produced by the airborne observation platform (AOP) sensors such as LIDAR and cameras still require the user to work directly with the downloaded files returned by neon_index(). Note that the local database can process Eddy Covariance data (h5 files), but at present this does not work with neon_cloud().

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.