The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette explains the data requirements for using any of the
core functions of nixtlar
:
# Core functions of `nixtlar`
- nixtlar::nixtla_client_forecast()
- nixtlar::nixtla_client_historic()
- nixtlar::nixtla_client_detect_anomalies()
- nixtlar::nixtla_client_cross_validation()
- nixtlar::nixtla_client_plot()
nixtlar
now supports the following data structures: data
frames, tibbles, and tsibbles. The output format will always be a data
frame.
Regardless of your data structure, the following two columns must
always be included when using any core functions of
nixtlar
:
Date Column: This column must contain timestamps
formatted as YYYY-MM-DD
or
YYYY-MM-DD hh:mm:ss
, either as characters or date-time
objects. For date-time objects, we recommend using the
as.POSIX*
functions from base R, although
as.Date
is also supported. The default name for this column
is ds
. If your dataset uses a different name, please
specify it by setting the parameter
time_col="your_time_column_name"
.
Target Column: This column should contain the
numeric target variable for forecasting. The default name for this
column is y
. If your dataset uses a different name, specify
it by setting the parameter
target_col="your_target_column_name"
.
If you are working with multiple series, you must include a column
with a unique identifier for each series. This column can contain
characters or integers, and its default name is unique_id
.
If your dataset uses a different name for the identifier column, please
specify it by setting the parameter
id_col="your_id_column_name"
. If your dataset contains only
one series and does not need an identifier, set id_col
to
NULL
.
Please be aware that in earlier versions of nixtlar
, the
default name for id_col
was NULL
, but it is
now unique_id
.
# sample valid input
df <- nixtlar::electricity
head(df)
#> unique_id ds y
#> 1 BE 2016-10-22 00:00:00 70.00
#> 2 BE 2016-10-22 01:00:00 37.10
#> 3 BE 2016-10-22 02:00:00 37.10
#> 4 BE 2016-10-22 03:00:00 44.75
#> 5 BE 2016-10-22 04:00:00 37.10
#> 6 BE 2016-10-22 05:00:00 35.61
str(df)
#> 'data.frame': 8400 obs. of 3 variables:
#> $ unique_id: chr "BE" "BE" "BE" "BE" ...
#> $ ds : chr "2016-10-22 00:00:00" "2016-10-22 01:00:00" "2016-10-22 02:00:00" "2016-10-22 03:00:00" ...
#> $ y : num 70 37.1 37.1 44.8 37.1 ...
When using exogenous variables, nixtlar
distinguishes
between historical and future exogenous variables:
Historical Exogenous Variables: These should be
included in the input data immediately following the
id_col
, ds
, and y
columns. If
your dataset contains additional columns that are not exogenous
variables, you must remove them before using any core functions of
nixtlar
.
Future Exogenous Variables: These correspond to
the X_df
parameter and should cover the entire forecast
horizon. This dataset must include columns with the appropriate
timestamps and, if applicable, unique identifiers, formatted as
described in the previous sections.
# sample valid input with exogenous variables
df <- nixtlar::electricity_exo_vars
head(df)
#> unique_id ds y Exogenous1 Exogenous2 day_0 day_1 day_2
#> 1 BE 2016-10-22 00:00:00 70.00 49593 57253 0 0 0
#> 2 BE 2016-10-22 01:00:00 37.10 46073 51887 0 0 0
#> 3 BE 2016-10-22 02:00:00 37.10 44927 51896 0 0 0
#> 4 BE 2016-10-22 03:00:00 44.75 44483 48428 0 0 0
#> 5 BE 2016-10-22 04:00:00 37.10 44338 46721 0 0 0
#> 6 BE 2016-10-22 05:00:00 35.61 44504 46303 0 0 0
#> day_3 day_4 day_5 day_6
#> 1 0 0 1 0
#> 2 0 0 1 0
#> 3 0 0 1 0
#> 4 0 0 1 0
#> 5 0 0 1 0
#> 6 0 0 1 0
future_exo_vars <- nixtlar::electricity_future_exo_vars
head(future_exo_vars)
#> unique_id ds Exogenous1 Exogenous2 day_0 day_1 day_2 day_3
#> 1 BE 2016-12-31 00:00:00 64108 70318 0 0 0 0
#> 2 BE 2016-12-31 01:00:00 62492 67898 0 0 0 0
#> 3 BE 2016-12-31 02:00:00 61571 68379 0 0 0 0
#> 4 BE 2016-12-31 03:00:00 60381 64972 0 0 0 0
#> 5 BE 2016-12-31 04:00:00 60298 62900 0 0 0 0
#> 6 BE 2016-12-31 05:00:00 60339 62364 0 0 0 0
#> day_4 day_5 day_6
#> 1 0 1 0
#> 2 0 1 0
#> 3 0 1 0
#> 4 0 1 0
#> 5 0 1 0
#> 6 0 1 0
To learn more about how to use exogenous variables, please refer to the Exogenous variables vignette.
When using TimeGPT
via nixtlar
, ensure the
following:
No Missing Values in the Target Column: The
target column must not contain any missing values
(NA
).
Continuous Date Sequence: The dates must be continuous, without any gaps, from the start date to the end date, matching the frequency of the data.
Currently, nixtlar does not provide any functionality to fill missing values or dates. To learn more about this, please refer to the vignette on Special Topics.
The minimum size per series to obtain results from
nixtlar::nixtla_client_forecast
is one, regardless of the
frequency of the data. Keep in mind, however, that this will produce
results with limited accuracy.
For certain scenarios, more than one observation may be necessary:
level
,
quantiles
, or finetune_steps
.add_history=TRUE
.The minimum data requirement varies with the frequency of the data, detailed in the official TimeGPT documentation.
When using nixtlar::nixtla_client_cross_validation
, you
also need to consider the forecast horizon (h
), the number
of windows (n_windows
) and the step size
(step_size
). The formula for the minimum data points
required per series is:
\[\begin{equation} \text{Min per series} = \text{Min per frequency}+h+\text{step_size}*(\text{n_windows}-1) \end{equation}\]
Here, \(\text{Min per frequency}\) refers to the values specified in the table from the official documentation.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.