The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Data Requirements

library(nixtlar)

This vignette explains the data requirements for using any of the core functions of nixtlar:

# Core functions of `nixtlar` 
- nixtlar::nixtla_client_forecast()
- nixtlar::nixtla_client_historic()
- nixtlar::nixtla_client_detect_anomalies()
- nixtlar::nixtla_client_cross_validation()
- nixtlar::nixtla_client_plot()

1. Input Requirements

nixtlar now supports the following data structures: data frames, tibbles, and tsibbles. The output format will always be a data frame.

Regardless of your data structure, the following two columns must always be included when using any core functions of nixtlar:

2. Multiple Series

If you are working with multiple series, you must include a column with a unique identifier for each series. This column can contain characters or integers, and its default name is unique_id. If your dataset uses a different name for the identifier column, please specify it by setting the parameter id_col="your_id_column_name". If your dataset contains only one series and does not need an identifier, set id_col to NULL.

Please be aware that in earlier versions of nixtlar, the default name for id_col was NULL, but it is now unique_id.

# sample valid input 
df <- nixtlar::electricity
head(df)
#>   unique_id                  ds     y
#> 1        BE 2016-10-22 00:00:00 70.00
#> 2        BE 2016-10-22 01:00:00 37.10
#> 3        BE 2016-10-22 02:00:00 37.10
#> 4        BE 2016-10-22 03:00:00 44.75
#> 5        BE 2016-10-22 04:00:00 37.10
#> 6        BE 2016-10-22 05:00:00 35.61
str(df)
#> 'data.frame':    8400 obs. of  3 variables:
#>  $ unique_id: chr  "BE" "BE" "BE" "BE" ...
#>  $ ds       : chr  "2016-10-22 00:00:00" "2016-10-22 01:00:00" "2016-10-22 02:00:00" "2016-10-22 03:00:00" ...
#>  $ y        : num  70 37.1 37.1 44.8 37.1 ...

3. Exogenous Variables

When using exogenous variables, nixtlar distinguishes between historical and future exogenous variables:

# sample valid input with exogenous variables 
df <- nixtlar::electricity_exo_vars
head(df)
#>   unique_id                  ds     y Exogenous1 Exogenous2 day_0 day_1 day_2
#> 1        BE 2016-10-22 00:00:00 70.00      49593      57253     0     0     0
#> 2        BE 2016-10-22 01:00:00 37.10      46073      51887     0     0     0
#> 3        BE 2016-10-22 02:00:00 37.10      44927      51896     0     0     0
#> 4        BE 2016-10-22 03:00:00 44.75      44483      48428     0     0     0
#> 5        BE 2016-10-22 04:00:00 37.10      44338      46721     0     0     0
#> 6        BE 2016-10-22 05:00:00 35.61      44504      46303     0     0     0
#>   day_3 day_4 day_5 day_6
#> 1     0     0     1     0
#> 2     0     0     1     0
#> 3     0     0     1     0
#> 4     0     0     1     0
#> 5     0     0     1     0
#> 6     0     0     1     0

future_exo_vars <- nixtlar::electricity_future_exo_vars
head(future_exo_vars)
#>   unique_id                  ds Exogenous1 Exogenous2 day_0 day_1 day_2 day_3
#> 1        BE 2016-12-31 00:00:00      64108      70318     0     0     0     0
#> 2        BE 2016-12-31 01:00:00      62492      67898     0     0     0     0
#> 3        BE 2016-12-31 02:00:00      61571      68379     0     0     0     0
#> 4        BE 2016-12-31 03:00:00      60381      64972     0     0     0     0
#> 5        BE 2016-12-31 04:00:00      60298      62900     0     0     0     0
#> 6        BE 2016-12-31 05:00:00      60339      62364     0     0     0     0
#>   day_4 day_5 day_6
#> 1     0     1     0
#> 2     0     1     0
#> 3     0     1     0
#> 4     0     1     0
#> 5     0     1     0
#> 6     0     1     0

To learn more about how to use exogenous variables, please refer to the Exogenous variables vignette.

4. Missing values

When using TimeGPT via nixtlar, ensure the following:

  1. No Missing Values in the Target Column: The target column must not contain any missing values (NA).

  2. Continuous Date Sequence: The dates must be continuous, without any gaps, from the start date to the end date, matching the frequency of the data.

Currently, nixtlar does not provide any functionality to fill missing values or dates. To learn more about this, please refer to the vignette on Special Topics.

5. Minimum data requirements

The minimum size per series to obtain results from nixtlar::nixtla_client_forecast is one, regardless of the frequency of the data. Keep in mind, however, that this will produce results with limited accuracy.

For certain scenarios, more than one observation may be necessary:

The minimum data requirement varies with the frequency of the data, detailed in the official TimeGPT documentation.

When using nixtlar::nixtla_client_cross_validation, you also need to consider the forecast horizon (h), the number of windows (n_windows) and the step size (step_size). The formula for the minimum data points required per series is:

\[\begin{equation} \text{Min per series} = \text{Min per frequency}+h+\text{step_size}*(\text{n_windows}-1) \end{equation}\]

Here, \(\text{Min per frequency}\) refers to the values specified in the table from the official documentation.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.