The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
For uncertainty quantification, TimeGPT
can generate
both prediction intervals and quantiles, offering a measure of the range
of potential outcomes rather than just a single point forecast. In
real-life scenarios, forecasting often requires considering multiple
alternatives, not just one prediction. This vignette will explain how to
use prediction intervals with TimeGPT
via the
nixtlar
package.
A prediction interval is a range of values that the forecast can take with a given probability, often referred to as the confidence level. Hence, a 95% prediction interval should contain a range of values that includes the actual future value with a probability of 95%. Prediction intervals are part of probabilistic forecasting, which, unlike point forecasting, aims to generate the full forecast distribution instead of just the mean or the median of that distribution.
This vignette assumes you have already set up your API key. If you haven’t done this, please read the Get Started vignette first.
For this vignette, we will use the electricity consumption dataset
that is included in nixtlar
, which contains the hourly
prices of five different electricity markets.
TimeGPT
can generate prediction intervals when using the
following functions:
- nixtlar::nixtla_client_forecast()
- nixtlar::nixtla_client_historic()
- nixtlar::nixtla_client_detect_anomalies()
- nixtlar::nixtla_client_cross_validation()
For any of these functions, simply set the level
argument to the desired confidence level for the prediction intervals.
Keep in mind that level
should be a vector with numbers
between 0 and 100. You can use either quantiles
or
level
for uncertainty quantification, but not both.
fcst <- nixtla_client_forecast(df, h = 8, level=c(80,95))
#> Frequency chosen: h
head(fcst)
#> unique_id ds TimeGPT TimeGPT-lo-95 TimeGPT-lo-80
#> 1 BE 2016-12-31 00:00:00 45.19045 30.49691 35.50842
#> 2 BE 2016-12-31 01:00:00 43.24445 28.96423 35.37463
#> 3 BE 2016-12-31 02:00:00 41.95839 27.06667 35.34079
#> 4 BE 2016-12-31 03:00:00 39.79649 27.96751 32.32625
#> 5 BE 2016-12-31 04:00:00 39.20454 24.66072 30.99895
#> 6 BE 2016-12-31 05:00:00 40.10878 23.05056 32.43504
#> TimeGPT-hi-80 TimeGPT-hi-95
#> 1 54.87248 59.88399
#> 2 51.11427 57.52467
#> 3 48.57599 56.85011
#> 4 47.26672 51.62546
#> 5 47.41012 53.74836
#> 6 47.78252 57.16700
Note that the level
argument in the
nixtlar::nixtla_client_detect_anomalies()
function only
uses the maximum value when multiple values are provided. Therefore,
setting level = c(90, 95, 99)
, for example, is equivalent
to setting level = c(99)
, which is the default value.
anomalies <- nixtla_client_detect_anomalies(df) # level=c(90,95,99)
#> Frequency chosen: h
head(anomalies) # only the 99% confidence level is used
#> unique_id ds y anomaly TimeGPT TimeGPT-lo-99
#> 1 BE 2016-10-27 00:00:00 52.58 FALSE 56.07623 -28.58337
#> 2 BE 2016-10-27 01:00:00 44.86 FALSE 52.41973 -32.23986
#> 3 BE 2016-10-27 02:00:00 42.31 FALSE 52.81474 -31.84486
#> 4 BE 2016-10-27 03:00:00 39.66 FALSE 52.59026 -32.06934
#> 5 BE 2016-10-27 04:00:00 38.98 FALSE 52.67297 -31.98662
#> 6 BE 2016-10-27 05:00:00 42.31 FALSE 54.10659 -30.55301
#> TimeGPT-hi-99
#> 1 140.7358
#> 2 137.0793
#> 3 137.4743
#> 4 137.2499
#> 5 137.3326
#> 6 138.7662
nixtlar
includes a function to plot the historical data
and any output from nixtlar::nixtla_client_forecast
,
nixtlar::nixtla_client_historic
,
nixtlar::nixtla_client_detect_anomalies
and
nixtlar::nixtla_client_cross_validation
. If you have long
series, you can use max_insample_length
to only plot the
last N historical values (the forecast will always be plotted in
full).
When available, nixtlar::nixtla_client_plot
will
automatically plot the prediction intervals.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.