The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the
# starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- (RMS_dat0$T1 - baseT)/12
RMS_dat0$T2 <- (RMS_dat0$T2 - baseT)/12
RMS_dat0$T3 <- (RMS_dat0$T3 - baseT)/12
RMS_dat0$T4 <- (RMS_dat0$T4 - baseT)/12
RMS_dat0$T5 <- (RMS_dat0$T5 - baseT)/12
RMS_dat0$T6 <- (RMS_dat0$T6 - baseT)/12
RMS_dat0$T7 <- (RMS_dat0$T7 - baseT)/12
RMS_dat0$T8 <- (RMS_dat0$T8 - baseT)/12
RMS_dat0$T9 <- (RMS_dat0$T9 - baseT)/12
# Standardize time-invariant covariates (TICs)
## ex1 is standardized growth TIC in models
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
# Standardize time-varying covariate (TVC)
BL_mean <- mean(RMS_dat0[, "R1"])
BL_var <- var(RMS_dat0[, "R1"])
RMS_dat0$Rs1 <- (RMS_dat0$R1 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs2 <- (RMS_dat0$R2 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs3 <- (RMS_dat0$R3 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs4 <- (RMS_dat0$R4 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs5 <- (RMS_dat0$R5 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs6 <- (RMS_dat0$R6 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs7 <- (RMS_dat0$R7 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs8 <- (RMS_dat0$R8 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs9 <- (RMS_dat0$R9 - BL_mean)/sqrt(BL_var)
xstarts <- mean(baseT)
set.seed(20191029)
Math_TVC_BLS_f <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = TRUE,
records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 0, growth_TIC = "ex1",
res_scale = 0.1, tries = 10
)
paraBLS_TVC.f <- c(
"Y_alpha0", "Y_alpha1", "Y_alpha2", "Y_alphag",
paste0("Y_psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")),
"Y_residuals", "X_mueta0", "X_mueta1", paste0("X_psi", c("00", "01", "11")),
paste0("X_rel_rate", 2:8), paste0("X_abs_rate", 1:8), "X_residuals",
paste0("betaTIC", c(0:2, "g")), paste0("betaTVC", c(0:2, "g")), "muTIC", "phiTIC",
"Y_mueta0", "Y_mueta1", "Y_mueta2", "Y_mu_knot", "covBL", "kappa", "Cov_XYres"
)
set.seed(20191029)
Math_TVCslp_BLS_f <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = TRUE,
records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 1, growth_TIC = "ex1",
res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE,
names = paraBLS_TVC.f
)
getEstimateStats(est_in = Math_TVCslp_BLS_f@Estimates, CI_type = "Wald")
#> An object of class "StatsOutput"
#> Slot "wald":
#> Estimate SE p.value wald_lbound wald_ubound
#> Y_alpha0 37.1158 0.4057 <0.0001 36.3206 37.9110
#> Y_alpha1 20.4875 0.2061 <0.0001 20.0836 20.8914
#> Y_alpha2 8.2065 0.1880 <0.0001 7.8380 8.5750
#> Y_alphag 3.1600 0.0419 <0.0001 3.0779 3.2421
#> Y_psi00 47.2135 4.1854 <0.0001 39.0103 55.4167
#> Y_psi01 -1.2051 1.6321 0.4603 -4.4040 1.9938
#> Y_psi02 -2.2946 1.4974 0.1254 -5.2295 0.6403
#> Y_psi0g -0.3718 0.3036 0.2207 -0.9668 0.2232
#> Y_psi11 12.1669 1.2113 <0.0001 9.7928 14.5410
#> Y_psi12 -0.2187 0.8047 0.7858 -1.7959 1.3585
#> Y_psi1g -0.7959 0.1918 <0.0001 -1.1718 -0.4200
#> Y_psi22 3.3249 1.1547 0.004 1.0617 5.5881
#> Y_psi2g -0.3249 0.1806 0.072 -0.6789 0.0291
#> Y_psigg 0.2939 0.0484 <0.0001 0.1990 0.3888
#> Y_residuals 28.3922 0.8050 <0.0001 26.8144 29.9700
#> X_mueta0 0.0093 0.0556 0.8672 -0.0997 0.1183
#> X_mueta1 2.5036 0.0701 <0.0001 2.3662 2.6410
#> X_psi00 1.2124 0.0857 <0.0001 1.0444 1.3804
#> X_psi01 -0.0776 0.0203 1e-04 -0.1174 -0.0378
#> X_psi11 0.0980 0.0106 <0.0001 0.0772 0.1188
#> X_rel_rate2 0.6947 0.0384 <0.0001 0.6194 0.7700
#> X_rel_rate3 1.2478 0.0431 <0.0001 1.1633 1.3323
#> X_rel_rate4 0.4903 0.0303 <0.0001 0.4309 0.5497
#> X_rel_rate5 0.7110 0.0330 <0.0001 0.6463 0.7757
#> X_rel_rate6 0.2823 0.0169 <0.0001 0.2492 0.3154
#> X_rel_rate7 0.3019 0.0168 <0.0001 0.2690 0.3348
#> X_rel_rate8 0.2568 0.0165 <0.0001 0.2245 0.2891
#> X_abs_rate1 2.5036 0.0701 <0.0001 2.3662 2.6410
#> X_abs_rate2 1.7393 0.0664 <0.0001 1.6092 1.8694
#> X_abs_rate3 3.1242 0.0664 <0.0001 2.9941 3.2543
#> X_abs_rate4 1.2275 0.0680 <0.0001 1.0942 1.3608
#> X_abs_rate5 1.7801 0.0657 <0.0001 1.6513 1.9089
#> X_abs_rate6 0.7069 0.0380 <0.0001 0.6324 0.7814
#> X_abs_rate7 0.7559 0.0367 <0.0001 0.6840 0.8278
#> X_abs_rate8 0.6429 0.0375 <0.0001 0.5694 0.7164
#> X_residuals 0.3587 0.0088 <0.0001 0.3415 0.3759
#> betaTIC0 0.9665 0.3921 0.0137 0.1980 1.7350
#> betaTIC1 0.1190 0.2145 0.579 -0.3014 0.5394
#> betaTIC2 -0.2104 0.2004 0.2938 -0.6032 0.1824
#> betaTICg 0.0049 0.0405 0.9037 -0.0745 0.0843
#> betaTVC0 7.6230 0.3801 <0.0001 6.8780 8.3680
#> betaTVC1 0.8498 0.2045 <0.0001 0.4490 1.2506
#> betaTVC2 -0.3467 0.1912 0.0698 -0.7214 0.0280
#> betaTVCg -0.1272 0.0394 0.0012 -0.2044 -0.0500
#> muTIC 0.0000 0.0447 >0.9999 -0.0876 0.0876
#> phiTIC 0.9980 0.0631 <0.0001 0.8743 1.1217
#> Y_mueta0 37.1867 0.5451 <0.0001 36.1183 38.2551
#> Y_mueta1 20.4954 0.2062 <0.0001 20.0913 20.8995
#> Y_mueta2 8.2032 0.1890 <0.0001 7.8328 8.5736
#> Y_mu_knot 3.1588 0.0418 <0.0001 3.0769 3.2407
#> covBL 0.4000 0.0523 <0.0001 0.2975 0.5025
#> kappa 1.7789 0.1059 <0.0001 1.5713 1.9865
#> Cov_XYres 0.5510 0.0619 <0.0001 0.4297 0.6723
#>
#> Slot "likelihood":
#> data frame with 0 columns and 0 rows
#>
#> Slot "bootstrap":
#> data frame with 0 columns and 0 rows
Figure1 <- getFigure(
model = Math_TVC_BLS_f@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS",
y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
show(Figure1)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
Figure2 <- getFigure(
model = Math_TVCslp_BLS_f@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS",
y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
show(Figure2)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
A comparison between Figure 1 and Figure 2 demonstrates that incorporating a TVC directly results in underestimation of the growth factor means.
paraBLS_TVC.r <- c(
"Y_alpha0", "Y_alpha1", "Y_alpha2", "Y_knot",
paste0("Y_psi", c("00", "01", "02", "11", "12", "22")), "Y_residuals",
"X_mueta0", "X_mueta1", paste0("X_psi", c("00", "01", "11")),
paste0("X_rel_rate", 2:8), paste0("X_abs_rate", 1:8), "X_residuals",
paste0("betaTIC", 0:2), paste0("betaTVC", 0:2), "muTIC", "phiTIC",
"Y_mueta0", "Y_mueta1", "Y_mueta2", "covBL", "kappa", "Cov_XYres"
)
set.seed(20191029)
Math_TVCslp_BLS_r <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, y_model = "LGCM", TVC = "R", decompose = 1, growth_TIC = "ex1",
res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE,
names = paraBLS_TVC.r)
set.seed(20191029)
Math_TVCchg_BLS_r <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, y_model = "LGCM", TVC = "R", decompose = 2, growth_TIC = "ex1",
res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE,
names = paraBLS_TVC.r)
set.seed(20191029)
Math_TVCchgBL_BLS_r <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, y_model = "LGCM", TVC = "R", decompose = 3, growth_TIC = "ex1",
res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE,
names = paraBLS_TVC.r)
Figure3 <- getFigure(
model = Math_TVCslp_BLS_r@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS",
y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure3)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
Figure4 <- getFigure(
model = Math_TVCchg_BLS_r@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS",
y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure4)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
Figure5 <- getFigure(
model = Math_TVCchgBL_BLS_r@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS",
y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure5)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.