The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

nonlinearICP: Invariant Causal Prediction for Nonlinear Models

Performs 'nonlinear Invariant Causal Prediction' to estimate the causal parents of a given target variable from data collected in different experimental or environmental conditions, extending 'Invariant Causal Prediction' from Peters, Buehlmann and Meinshausen (2016), <doi:10.48550/arXiv.1501.01332>, to nonlinear settings. For more details, see C. Heinze-Deml, J. Peters and N. Meinshausen: 'Invariant Causal Prediction for Nonlinear Models', <doi:10.48550/arXiv.1706.08576>.

Version: 0.1.2.1
Depends: R (≥ 3.1.0)
Imports: methods, CondIndTests, data.tree, caTools, randomForest
Suggests: testthat
Published: 2017-07-31
DOI: 10.32614/CRAN.package.nonlinearICP
Author: Christina Heinze-Deml, Jonas Peters
Maintainer: Christina Heinze-Deml <heinzedeml at stat.math.ethz.ch>
BugReports: https://github.com/christinaheinze/nonlinearICP-and-CondIndTests/issues
License: GPL-2 | GPL-3 [expanded from: GPL]
URL: https://github.com/christinaheinze/nonlinearICP-and-CondIndTests
NeedsCompilation: no
Citation: nonlinearICP citation info
In views: CausalInference
CRAN checks: nonlinearICP results

Documentation:

Reference manual: nonlinearICP.pdf

Downloads:

Package source: nonlinearICP_0.1.2.1.tar.gz
Windows binaries: r-devel: nonlinearICP_0.1.2.1.zip, r-release: nonlinearICP_0.1.2.1.zip, r-oldrel: nonlinearICP_0.1.2.1.zip
macOS binaries: r-release (arm64): nonlinearICP_0.1.2.1.tgz, r-oldrel (arm64): nonlinearICP_0.1.2.1.tgz, r-release (x86_64): nonlinearICP_0.1.2.1.tgz, r-oldrel (x86_64): nonlinearICP_0.1.2.1.tgz
Old sources: nonlinearICP archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=nonlinearICP to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.