The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: Re-Scale Vectors and Time-Series Features
Version: 0.1.2
Date: 2024-02-28
Maintainer: Trent Henderson <then6675@uni.sydney.edu.au>
Description: Provides standardized access to a range of re-scaling methods for numerical vectors and time-series features calculated within the 'theft' ecosystem.
BugReports: https://github.com/hendersontrent/normaliseR/issues
License: MIT + file LICENSE
Encoding: UTF-8
Depends: R (≥ 3.5.0)
Imports: rlang, stats, dplyr, scales
Suggests: knitr, markdown, rmarkdown, pkgdown, testthat (≥ 3.0.0)
RoxygenNote: 7.2.2
VignetteBuilder: knitr
Config/testthat/edition: 3
URL: https://hendersontrent.github.io/normaliseR/
NeedsCompilation: no
Packaged: 2024-02-28 00:25:29 UTC; trenthenderson
Author: Trent Henderson [cre, aut]
Repository: CRAN
Date/Publication: 2024-02-29 11:50:02 UTC

Re-Scale Vectors and Time-Series Features

Description

Re-scale Vectors and Time-Series Features


Rescales a numeric vector using maximum absolute scaling

Description

z_{i} = \frac{x_{i}}{\text{max}(\mathbf{x})}

Usage

maxabs_scaler(x)

Arguments

x

numeric vector

Value

numeric vector

Author(s)

Trent Henderson


Rescales a numeric vector into the unit interval [0,1]

Description

z_{i} = \frac{x_{i} - \text{min}(\mathbf{x})}{\text{max}(\mathbf{x}) - \text{min}(\mathbf{x})}

Usage

minmax_scaler(x)

Arguments

x

numeric vector

Value

numeric vector

Author(s)

Trent Henderson


Scale each feature vector into a user-specified range for visualisation and modelling

Description

'normalise()' and 'normalize()' are synonyms.

Usage

normalise(
  data,
  norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
  unit_int = FALSE
)

normalize(
  data,
  norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
  unit_int = FALSE
)

Arguments

data

either a feature_calculations object containing the raw feature matrix produced by theft::calculate_features or a vector of class numeric containing values to be rescaled

norm_method

character denoting the rescaling/normalising method to apply. Can be one of "zScore", "Sigmoid", "RobustSigmoid", "MinMax", or "MaxAbs". Defaults to "zScore"

unit_int

Boolean whether to rescale into unit interval [0,1] after applying normalisation method. Defaults to FALSE

Value

either an object of class feature_calculations object or a numeric vector depending on the data type supplied to data

Author(s)

Trent Henderson


Rescales a numeric vector using an outlier-robust Sigmoidal transformation

Description

z_{i} = \left[1 + \exp\left(-\frac{x_{i} - \text{median}(\mathbf{x})}{\text{IQR}(\mathbf{x})/{1.35}}\right)\right]^{-1}

Usage

robustsigmoid_scaler(x)

Arguments

x

numeric vector

Value

numeric vector

Author(s)

Trent Henderson

References

Fulcher, Ben D., Little, Max A., and Jones, Nick S. Highly Comparative Time-Series Analysis: The Empirical Structure of Time Series and Their Methods. Journal of The Royal Society Interface 10(83), (2013).


Rescales a numeric vector using a Sigmoidal transformation

Description

z_{i} = \left[1 + \exp(-\frac{x_{i} - \mu}{\sigma})\right]^{-1}

Usage

sigmoid_scaler(x)

Arguments

x

numeric vector

Value

numeric vector

Author(s)

Trent Henderson


Rescales a numeric vector into z-scores

Description

z_{i} = \frac{x_{i} - \mu}{\sigma}

Usage

zscore_scaler(x)

Arguments

x

numeric vector

Value

numeric vector

Author(s)

Trent Henderson

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.