The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
OMPR (Optimization Modeling Package) is a DSL to model and solve Mixed Integer Linear Programs. It is inspired by the excellent Jump project in Julia.
Here are some problems you could solve with this package:
The Wikipedia article gives a good starting point if you would like to learn more about the topic.
I am always happy to get bug reports or feedback.
install.packages("ompr")
install.packages("ompr.roi")
To install the current development version use devtools:
::install_github("dirkschumacher/ompr")
remotes::install_github("dirkschumacher/ompr.roi") remotes
suppressPackageStartupMessages(library(dplyr, quietly = TRUE))
suppressPackageStartupMessages(library(ROI))
library(ROI.plugin.glpk)
library(ompr)
library(ompr.roi)
<- MIPModel() |>
result add_variable(x, type = "integer") |>
add_variable(y, type = "continuous", lb = 0) |>
set_bounds(x, lb = 0) |>
set_objective(x + y, "max") |>
add_constraint(x + y <= 11.25) |>
solve_model(with_ROI(solver = "glpk"))
get_solution(result, x)
#> x
#> 11
get_solution(result, y)
#> y
#> 0.25
These functions currently form the public API. More detailed docs can be found in the package function docs or on the website
MIPModel()
create an empty mixed integer linear model
(the old way)add_variable()
adds variables to a modelset_objective()
sets the objective function of a
modelset_bounds()
sets bounds of variablesadd_constraint()
add constraintssolve_model()
solves a model with a given solverget_solution()
returns the column solution (primal or
dual) of a solved model for a given variable or group of variablesget_row_duals()
returns the row duals of a solution
(only if it is an LP)get_column_duals()
returns the column duals of a
solution (only if it is an LP)There are currently two backends. A backend is the function that initializes an empty model.
MIPModel()
is the standard MILP Model.MILPModel()
is another backend specifically optimized
for linear models and is often faster than MIPModel()
. It
has different semantics, as it is vectorized. Currently experimental and
might be deprecated in the future.Solvers are in different packages. ompr.ROI
uses the ROI
package which offers support for all kinds of solvers.
with_ROI(solver = "glpk")
solve the model with GLPK.
Install ROI.plugin.glpk
with_ROI(solver = "symphony")
solve the model with
Symphony. Install ROI.plugin.symphony
with_ROI(solver = "cplex")
solve the model with CPLEX.
Install ROI.plugin.cplex
Please take a look at the docs for bigger examples.
<- 5
max_capacity <- 10
n set.seed(1234)
<- runif(n, max = max_capacity)
weights MIPModel() |>
add_variable(x[i], i = 1:n, type = "binary") |>
set_objective(sum_over(weights[i] * x[i], i = 1:n), "max") |>
add_constraint(sum_over(weights[i] * x[i], i = 1:n) <= max_capacity) |>
solve_model(with_ROI(solver = "glpk")) |>
get_solution(x[i]) |>
filter(value > 0)
#> variable i value
#> 1 x 1 1
#> 2 x 6 1
#> 3 x 7 1
#> 4 x 8 1
An example of a more difficult model solved by GLPK
<- 10
max_bins <- 3
bin_size <- 10
n <- runif(n, max = bin_size)
weights MIPModel() |>
add_variable(y[i], i = 1:max_bins, type = "binary") |>
add_variable(x[i, j], i = 1:max_bins, j = 1:n, type = "binary") |>
set_objective(sum_over(y[i], i = 1:max_bins), "min") |>
add_constraint(sum_over(weights[j] * x[i, j], j = 1:n) <= y[i] * bin_size, i = 1:max_bins) |>
add_constraint(sum_over(x[i, j], i = 1:max_bins) == 1, j = 1:n) |>
solve_model(with_ROI(solver = "glpk", verbose = TRUE)) |>
get_solution(x[i, j]) |>
filter(value > 0) |>
arrange(i)
#> <SOLVER MSG> ----
#> GLPK Simplex Optimizer, v4.65
#> 20 rows, 110 columns, 210 non-zeros
#> 0: obj = 0.000000000e+00 inf = 1.000e+01 (10)
#> 29: obj = 4.546337429e+00 inf = 0.000e+00 (0)
#> * 34: obj = 4.546337429e+00 inf = 0.000e+00 (0)
#> OPTIMAL LP SOLUTION FOUND
#> GLPK Integer Optimizer, v4.65
#> 20 rows, 110 columns, 210 non-zeros
#> 110 integer variables, all of which are binary
#> Integer optimization begins...
#> Long-step dual simplex will be used
#> + 34: mip = not found yet >= -inf (1; 0)
#> + 62: >>>>> 5.000000000e+00 >= 5.000000000e+00 0.0% (13; 0)
#> + 62: mip = 5.000000000e+00 >= tree is empty 0.0% (0; 25)
#> INTEGER OPTIMAL SOLUTION FOUND
#> <!SOLVER MSG> ----
#> variable i j value
#> 1 x 1 2 1
#> 2 x 1 9 1
#> 3 x 1 10 1
#> 4 x 2 5 1
#> 5 x 2 7 1
#> 6 x 2 8 1
#> 7 x 3 6 1
#> 8 x 4 4 1
#> 9 x 10 1 1
#> 10 x 10 3 1
MIT
Please post an issue first before sending a PR.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.