The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The optsize
package helps design field experiments by
determining optimum plot size and shape, accounting for soil
heterogeneity.
A rice uniformity trial dataset is used to demonstrate functionality. Field size: 20 × 38 m, spacing 20 × 20 cm, 1 m border excluded (net area 18 × 36 m), yields recorded from 1 × 1 m plots.
library(optsize)
# Load field yield data
data <- system.file("extdata", "data.csv", package = "optsize")
mat <- read.csv(data, header = FALSE)
df_mat <- as.matrix(data)
df_mat <- apply(df_mat, 2, as.numeric)
#> Warning in apply(df_mat, 2, as.numeric): NAs introduced by coercion
mode(df_mat) # should return "numeric"
#> [1] "numeric"
# Generate possible plot shapes
res <- generate_plot_shapes(mat)
res
#> plot_size_units shape_h shape_w num_plots shape V_between V_per_unit_area
#> 1 1 1 1 648 1x1 9031.382 9031.382
#> 2 2 1 2 324 1x2 31282.260 7820.565
#> 3 2 2 1 324 2x1 31259.970 7814.993
#> 4 3 1 3 216 1x3 65614.958 7290.551
#> 5 3 3 1 216 3x1 66012.856 7334.762
#> 6 4 4 1 162 4x1 112710.911 7044.432
#> 7 4 2 2 162 2x2 113692.096 7105.756
#> 8 6 1 6 108 1x6 231685.879 6435.719
#> 9 6 6 1 108 6x1 234563.120 6515.642
#> 10 6 2 3 108 2x3 243534.564 6764.849
#> 11 6 3 2 108 3x2 244669.416 6796.373
#> 12 8 4 2 81 4x2 422164.299 6596.317
#> 13 9 1 9 72 1x9 483485.623 5968.958
#> 14 9 9 1 72 9x1 505612.734 6242.133
#> 15 9 3 3 72 3x3 525254.345 6484.622
#> 16 12 12 1 54 12x1 827820.090 5748.751
#> 17 12 2 6 54 2x6 887072.645 6160.227
#> 18 12 6 2 54 6x2 891798.497 6193.045
#> 19 12 4 3 54 4x3 920952.719 6395.505
#> 20 18 1 18 36 1x18 1847745.799 5702.919
#> 21 18 18 1 36 18x1 1513452.076 4671.148
#> 22 18 2 9 36 2x9 1859865.854 5740.327
#> 23 18 9 2 36 9x2 1955124.299 6034.334
#> 24 18 3 6 36 3x6 1911145.854 5898.598
#> 25 18 6 3 36 6x3 1938331.632 5982.505
#> 26 24 12 2 27 12x2 3190006.469 5538.206
#> 27 24 4 6 27 4x6 3379330.914 5866.894
#> 28 27 3 9 24 3x9 4013336.859 5505.263
#> 29 27 9 3 24 9x3 4281305.609 5872.847
#> CV_percent p_value test_used
#> 1 12.962480 NA <NA>
#> 2 12.062298 0.9948933 F-test
#> 3 12.058000 0.9948933 F-test
#> 4 11.646386 0.9646868 F-test
#> 5 11.681645 0.9646868 F-test
#> 6 11.448115 0.9562144 F-test
#> 7 11.497837 0.9562144 F-test
#> 8 10.942323 0.9896631 Bartlett
#> 9 11.010058 0.9896631 Bartlett
#> 10 11.218636 0.9896631 Bartlett
#> 11 11.244745 0.9896631 Bartlett
#> 12 11.078010 NA <NA>
#> 13 10.538050 0.9411901 Bartlett
#> 14 10.776494 0.9411901 Bartlett
#> 15 10.983818 0.9411901 Bartlett
#> 16 10.341838 0.9841564 Bartlett
#> 17 10.705559 0.9841564 Bartlett
#> 18 10.734038 0.9841564 Bartlett
#> 19 10.908083 0.9841564 Bartlett
#> 20 10.300531 0.9795267 Bartlett
#> 21 9.322295 0.9795267 Bartlett
#> 22 10.334258 0.9795267 Bartlett
#> 23 10.595603 0.9795267 Bartlett
#> 24 10.475757 0.9795267 Bartlett
#> 25 10.550002 0.9795267 Bartlett
#> 26 10.150689 0.8842567 F-test
#> 27 10.447566 0.8842567 F-test
#> 28 10.120455 0.8781609 F-test
#> 29 10.452865 0.8781609 F-test
# Fit variance law to determine optimum plot size
out_var <- fit_variance_law(mat)
print(out_var$plots)
#> $original
#>
#> $loglog
out_var
#> $df_shapes
#> plot_size_units shape_h shape_w num_plots shape V_between V_per_unit_area
#> 1 1 1 1 648 1x1 9031.382 9031.382
#> 2 2 1 2 324 1x2 31282.260 7820.565
#> 3 2 2 1 324 2x1 31259.970 7814.993
#> 4 3 1 3 216 1x3 65614.958 7290.551
#> 5 3 3 1 216 3x1 66012.856 7334.762
#> 6 4 4 1 162 4x1 112710.911 7044.432
#> 7 4 2 2 162 2x2 113692.096 7105.756
#> 8 6 1 6 108 1x6 231685.879 6435.719
#> 9 6 6 1 108 6x1 234563.120 6515.642
#> 10 6 2 3 108 2x3 243534.564 6764.849
#> 11 6 3 2 108 3x2 244669.416 6796.373
#> 12 8 4 2 81 4x2 422164.299 6596.317
#> 13 9 1 9 72 1x9 483485.623 5968.958
#> 14 9 9 1 72 9x1 505612.734 6242.133
#> 15 9 3 3 72 3x3 525254.345 6484.622
#> 16 12 12 1 54 12x1 827820.090 5748.751
#> 17 12 2 6 54 2x6 887072.645 6160.227
#> 18 12 6 2 54 6x2 891798.497 6193.045
#> 19 12 4 3 54 4x3 920952.719 6395.505
#> 20 18 1 18 36 1x18 1847745.799 5702.919
#> 21 18 18 1 36 18x1 1513452.076 4671.148
#> 22 18 2 9 36 2x9 1859865.854 5740.327
#> 23 18 9 2 36 9x2 1955124.299 6034.334
#> 24 18 3 6 36 3x6 1911145.854 5898.598
#> 25 18 6 3 36 6x3 1938331.632 5982.505
#> 26 24 12 2 27 12x2 3190006.469 5538.206
#> 27 24 4 6 27 4x6 3379330.914 5866.894
#> 28 27 3 9 24 3x9 4013336.859 5505.263
#> 29 27 9 3 24 9x3 4281305.609 5872.847
#> CV_percent p_value test_used
#> 1 12.962480 NA <NA>
#> 2 12.062298 0.9948933 F-test
#> 3 12.058000 0.9948933 F-test
#> 4 11.646386 0.9646868 F-test
#> 5 11.681645 0.9646868 F-test
#> 6 11.448115 0.9562144 F-test
#> 7 11.497837 0.9562144 F-test
#> 8 10.942323 0.9896631 Bartlett
#> 9 11.010058 0.9896631 Bartlett
#> 10 11.218636 0.9896631 Bartlett
#> 11 11.244745 0.9896631 Bartlett
#> 12 11.078010 NA <NA>
#> 13 10.538050 0.9411901 Bartlett
#> 14 10.776494 0.9411901 Bartlett
#> 15 10.983818 0.9411901 Bartlett
#> 16 10.341838 0.9841564 Bartlett
#> 17 10.705559 0.9841564 Bartlett
#> 18 10.734038 0.9841564 Bartlett
#> 19 10.908083 0.9841564 Bartlett
#> 20 10.300531 0.9795267 Bartlett
#> 21 9.322295 0.9795267 Bartlett
#> 22 10.334258 0.9795267 Bartlett
#> 23 10.595603 0.9795267 Bartlett
#> 24 10.475757 0.9795267 Bartlett
#> 25 10.550002 0.9795267 Bartlett
#> 26 10.150689 0.8842567 F-test
#> 27 10.447566 0.8842567 F-test
#> 28 10.120455 0.8781609 F-test
#> 29 10.452865 0.8781609 F-test
#>
#> $V1
#> [1] 9031.382
#>
#> $b_hat
#> [1] 0.1552106
#>
#> $R2_log
#> [1] 0.9556521
#>
#> $x_opt
#> [1] 27
#>
#> $Vx_opt
#> [1] 5414.912
#>
#> $best_shape
#> plot_size_units shape_h shape_w num_plots shape V_between V_per_unit_area
#> 28 27 3 9 24 3x9 4013337 5505.263
#> CV_percent p_value test_used
#> 28 10.12046 0.8781609 F-test
#>
#> $plots
#> $plots$original
#>
#> $plots$loglog
#>
#> $serial_correlation
#> $serial_correlation$vertical
#> [1] 0.7314371
#>
#> $serial_correlation$horizontal
#> [1] 0.7439238
#>
#>
#> $moving_avg_values
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 824.7778 846.5556 889.5556 923.0000 926.5556 900.2222 874.6667 882.6667
#> [2,] 838.1111 864.8889 888.1111 888.2222 865.2222 847.0000 844.1111 857.2222
#> [3,] 833.1111 832.3333 847.1111 841.8889 822.0000 819.7778 822.3333 844.4444
#> [4,] 862.7778 843.2222 840.4444 810.7778 802.0000 793.8889 805.2222 802.0000
#> [5,] 872.6667 860.1111 858.5556 841.4444 836.1111 819.8889 814.1111 821.2222
#> [6,] 897.2222 891.8889 880.4444 853.3333 835.6667 807.6667 811.3333 826.4444
#> [7,] 861.5556 875.1111 862.3333 849.6667 813.7778 796.7778 809.7778 836.3333
#> [8,] 821.5556 829.4444 811.3333 801.4444 761.8889 753.3333 765.6667 788.8889
#> [9,] 791.1111 805.3333 793.4444 781.6667 757.3333 741.3333 750.2222 745.5556
#> [10,] 806.3333 821.8889 806.2222 796.6667 779.4444 757.6667 755.4444 744.3333
#> [11,] 821.8889 822.3333 798.0000 787.7778 779.6667 762.1111 755.1111 731.5556
#> [12,] 840.2222 808.2222 763.0000 762.7778 766.8889 767.6667 752.5556 739.3333
#> [13,] 842.4444 785.2222 727.2222 722.2222 747.8889 759.7778 735.1111 725.3333
#> [14,] 847.0000 782.3333 726.6667 718.7778 747.5556 756.1111 732.1111 743.1111
#> [15,] 816.3333 786.1111 751.6667 753.8889 751.8889 754.7778 714.5556 730.7778
#> [16,] 801.5556 777.0000 758.0000 752.6667 741.5556 740.7778 703.1111 720.4444
#> [17,] 764.7778 753.1111 749.2222 745.8889 750.7778 740.4444 704.6667 704.8889
#> [18,] 766.1111 736.1111 726.4444 713.6667 738.5556 722.8889 714.7778 716.1111
#> [19,] 752.8889 726.1111 718.5556 711.2222 728.8889 703.0000 708.0000 699.8889
#> [20,] 757.2222 739.5556 726.4444 719.6667 717.5556 692.6667 701.0000 696.7778
#> [21,] 755.5556 741.7778 730.0000 715.6667 706.0000 679.7778 667.4444 664.4444
#> [22,] 748.4444 730.7778 720.2222 704.4444 698.1111 675.1111 659.8889 664.7778
#> [23,] 719.2222 700.7778 704.3333 688.1111 685.7778 669.0000 655.7778 668.0000
#> [24,] 694.4444 687.7778 699.5556 690.4444 681.0000 666.8889 663.5556 676.8889
#> [25,] 685.8889 696.5556 701.4444 688.8889 670.6667 659.0000 656.8889 664.1111
#> [26,] 701.2222 705.3333 703.0000 685.7778 652.0000 624.3333 611.4444 625.7778
#> [27,] 730.1111 697.0000 679.7778 662.5556 636.6667 612.2222 600.4444 607.2222
#> [28,] 726.2222 690.8889 677.8889 660.3333 622.7778 582.5556 576.7778 605.7778
#> [29,] 729.6667 698.3333 681.3333 660.8889 635.3333 609.5556 613.6667 634.5556
#> [30,] 694.3333 688.7778 661.5556 633.8889 612.5556 592.4444 594.6667 620.0000
#> [31,] 684.0000 688.8889 658.8889 632.6667 620.3333 613.1111 610.7778 619.6667
#> [32,] 669.4444 690.3333 646.3333 621.0000 603.1111 599.2222 587.5556 589.7778
#> [33,] 662.6667 689.0000 659.8889 636.5556 620.8889 609.1111 594.2222 591.3333
#> [34,] 648.1111 667.1111 648.4444 637.2222 630.1111 616.8889 593.0000 583.5556
#> [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
#> [1,] 887.1111 887.1111 867.8889 840.8889 804.7778 814.5556 860.6667 911.6667
#> [2,] 883.7778 888.7778 888.5556 836.6667 793.5556 780.1111 830.8889 897.3333
#> [3,] 867.7778 872.2222 873.0000 815.0000 774.7778 744.1111 787.2222 853.0000
#> [4,] 831.3333 860.7778 869.1111 821.2222 795.4444 753.6667 766.6667 812.4444
#> [5,] 847.1111 864.6667 855.3333 810.8889 780.5556 733.3333 731.8889 780.7778
#> [6,] 845.5556 846.4444 822.2222 795.6667 776.0000 750.1111 740.7778 774.4444
#> [7,] 854.1111 842.4444 820.0000 809.4444 776.8889 742.3333 728.6667 761.5556
#> [8,] 812.3333 808.7778 800.8889 801.1111 772.5556 749.4444 730.2222 751.8889
#> [9,] 791.8889 796.0000 814.2222 803.2222 776.6667 735.0000 712.1111 729.0000
#> [10,] 783.0000 782.2222 785.7778 765.0000 757.6667 731.4444 722.0000 720.5556
#> [11,] 754.2222 756.1111 757.5556 731.6667 726.5556 704.1111 704.2222 701.2222
#> [12,] 740.5556 745.8889 732.3333 723.2222 707.3333 704.8889 696.0000 694.4444
#> [13,] 727.8889 745.1111 735.7778 733.1111 717.0000 714.8889 693.6667 698.8889
#> [14,] 750.4444 769.7778 740.8889 740.7778 721.4444 722.1111 719.7778 723.3333
#> [15,] 735.3333 767.2222 748.2222 736.0000 727.3333 725.3333 749.3333 743.3333
#> [16,] 729.0000 767.7778 752.5556 731.8889 724.2222 723.0000 751.2222 736.7778
#> [17,] 710.2222 750.1111 752.5556 728.0000 711.3333 704.2222 714.6667 697.8889
#> [18,] 735.0000 768.6667 770.7778 751.7778 728.0000 705.2222 691.8889 676.6667
#> [19,] 713.4444 731.1111 751.5556 748.0000 726.5556 692.4444 670.2222 660.6667
#> [20,] 723.5556 736.5556 753.6667 749.2222 739.4444 714.4444 689.8889 677.2222
#> [21,] 699.5556 716.6667 733.6667 722.2222 720.3333 705.6667 683.2222 667.0000
#> [22,] 706.3333 716.1111 717.0000 698.6667 699.1111 687.8889 668.6667 655.1111
#> [23,] 695.3333 703.1111 700.1111 693.5556 694.3333 682.0000 653.3333 639.1111
#> [24,] 694.4444 704.7778 696.8889 700.7778 688.5556 690.0000 667.2222 660.0000
#> [25,] 675.2222 697.0000 698.6667 702.4444 676.5556 680.0000 672.7778 667.3333
#> [26,] 646.2222 677.7778 671.3333 671.7778 639.5556 646.6667 655.0000 663.4444
#> [27,] 621.1111 636.8889 639.5556 641.6667 626.6667 630.1111 641.7778 653.8889
#> [28,] 627.2222 642.1111 631.2222 637.1111 629.5556 651.0000 648.7778 659.4444
#> [29,] 647.3333 653.1111 643.7778 653.7778 643.0000 669.2222 660.1111 680.6667
#> [30,] 639.7778 652.5556 635.8889 645.0000 629.3333 658.2222 642.5556 665.1111
#> [31,] 636.3333 649.8889 645.3333 648.1111 634.2222 655.6667 664.5556 683.6667
#> [32,] 615.4444 634.1111 645.8889 644.0000 644.0000 657.3333 659.4444 656.4444
#> [33,] 604.0000 624.7778 642.7778 656.2222 667.1111 685.7778 688.8889 673.0000
#> [34,] 581.8889 606.7778 624.7778 653.7778 666.3333 685.4444 673.3333 658.0000
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.