The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Welcome to the parafac4microbiome
R package! In this
vignette we explain the data available in this package, how you can
model them using PARAFAC and how to plot the outcome. We require the
following packages and dependencies.
The parafac4microbiome
package comes with three
datasets: Fujita2023
, Shao2019
and
vanderPloeg2024
. These refer to the first authors of their
respective papers. Each of the dataset objects are lists with the
following contents:
We briefly show what the data in these datasets look like and then
focus on Fujita2023
for the remainder of this vignette. For
details on the datasets we refer to the parafac4microbiome paper and to
the original papers as listed in their respective help files. Modelling
and component selection are explained in more detail in the vignettes
corresponding to each dataset:
vignette("Fujita2023_analysis")
,
vignette("Shao2019_analysis")
and
vignette("vanderPloeg2024_analysis")
.
dim(Fujita2023$data)
#> [1] 8 28 110
dim(Shao2019$data)
#> [1] 395 959 4
dim(vanderPloeg2024$data)
#> [1] 41 2253 7
# We focus on Fujita2023
head(Fujita2023$data[,,1])
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
#> [1,] 11932 0 0 0 0 0 0 0 0 113 0 161 0
#> [2,] 11532 0 0 0 0 0 0 0 0 0 0 0 0
#> [3,] 10331 0 0 0 0 0 0 0 0 236 0 0 1824
#> [4,] 11528 0 0 0 0 0 0 0 0 0 0 0 0
#> [5,] 13735 0 0 0 0 0 0 0 0 139 0 0 0
#> [6,] 9167 0 0 0 0 0 0 0 0 247 0 0 0
#> [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
#> [1,] 0 0 0 0 0 719 0 0 0 0 0 230
#> [2,] 0 0 0 0 0 0 0 38 0 0 0 0
#> [3,] 0 0 0 0 0 0 0 0 0 0 162 0
#> [4,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [5,] 217 0 0 0 0 239 0 0 67 0 0 0
#> [6,] 0 0 0 0 0 0 0 0 0 0 0 0
#> [,26] [,27] [,28]
#> [1,] 0 0 0
#> [2,] 0 0 231
#> [3,] 0 0 0
#> [4,] 0 0 0
#> [5,] 0 0 0
#> [6,] 0 0 0
head(Fujita2023$mode1)
#> # A tibble: 6 × 1
#> replicate.id
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> 6 6
head(Fujita2023$mode2)
#> ID Kingdom Phylum Class
#> 1 X_0002 Bacteria Proteobacteria Gammaproteobacteria
#> 2 X_0004 Bacteria Firmicutes Clostridia
#> 3 X_0007 Bacteria Proteobacteria Gammaproteobacteria
#> 4 X_0008 Bacteria Proteobacteria Gammaproteobacteria
#> 5 X_0010 Bacteria Proteobacteria Gammaproteobacteria
#> 6 X_0015 Bacteria Firmicutes Clostridia
#> Order Family
#> 1 Aeromonadales Aeromonadaceae
#> 2 Peptostreptococcales-Tissierellales Peptostreptococcaceae
#> 3 Burkholderiales Burkholderiaceae
#> 4 Burkholderiales Burkholderiaceae
#> 5 Enterobacterales unidentified
#> 6 Lachnospirales Lachnospiraceae
#> Genus Species
#> 1 Aeromonas unidentified
#> 2 Clostridioides mangenotii
#> 3 Pandoraea unidentified
#> 4 Burkholderia-Caballeronia-Paraburkholderia unidentified
#> 5 unidentified unidentified
#> 6 Lachnoclostridium unidentified
head(Fujita2023$mode3)
#> # A tibble: 6 × 1
#> time
#> <dbl>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> 6 6
As shown above, the data cube in Fujita2023$data contains unprocessed
counts. The function processDataCube()
performs the
processing of these counts with the following steps:
compositions::clr()
function with a pseudo-count of one
(on all features, prior to selection based on sparsity).The outcome of processing is a new version of the dataset. Please
refer to the documentation of processDataCube()
for more
information.
processedFujita = processDataCube(Fujita2023, sparsityThreshold=0.99, CLR=TRUE, centerMode=1, scaleMode=2)
head(processedFujita$data[,,1])
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
#> [1,] -0.5098 -0.265 -0.2669 -0.2743 -0.3655 -0.562 -0.2923 -0.5410 -0.890
#> [2,] 0.0763 0.017 0.0171 0.0176 0.0234 0.036 0.0187 0.0346 0.057
#> [3,] -0.5155 -0.179 -0.1797 -0.1847 -0.2461 -0.378 -0.1969 -0.3644 -0.600
#> [4,] 0.5277 0.218 0.2197 0.2258 0.3008 0.462 0.2406 0.4454 0.733
#> [5,] -0.2311 -0.228 -0.2296 -0.2359 -0.3144 -0.483 -0.2514 -0.4653 -0.766
#> [6,] -0.0526 0.102 0.1022 0.1050 0.1399 0.215 0.1119 0.2071 0.341
#> [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19]
#> [1,] 0.544 -0.862 -1.703 -0.495 -0.672 -0.4608 -0.2023 9.04 -0.9420 -1.199
#> [2,] -0.805 -0.575 -0.998 -0.272 0.043 0.0295 0.0130 -2.88 0.0603 4.373
#> [3,] 0.818 3.962 -1.487 -0.427 -0.453 -0.3104 -0.1363 -3.50 -0.6344 -1.010
#> [4,] -0.703 -0.369 -0.495 -0.114 0.553 0.3793 0.1666 -2.25 0.7754 -0.142
#> [5,] 0.627 -0.824 6.713 -0.466 -0.578 -0.3964 -0.1740 7.02 -0.8102 -1.118
#> [6,] 0.975 -0.488 -0.787 -0.206 0.257 0.1764 0.0775 -2.62 0.3607 -0.398
#> [,20] [,21] [,22] [,23]
#> [1,] -0.3990 10.070 -0.6812 -0.7411
#> [2,] 0.0255 -1.517 0.0436 0.0474
#> [3,] -0.2687 -2.252 -0.4588 -0.4991
#> [4,] 0.3285 -0.761 0.5608 0.6100
#> [5,] -0.3432 -2.438 -0.5860 -0.6374
#> [6,] 0.1528 -1.200 0.2608 0.2837
The processed data is ready to be modelled using Parallel Factor
Analysis. Here we arbitrarily set the number of factors (i.e. the number
of components) to be three. This is normally the outcome of a more
detailed investigation into the correct number of components, described
in vignette("Fujita2023_analysis")
,
vignette("Shao2019_analysis")
and
vignette("vanderPloeg2024_analysis")
. The output of the
function is a parafac object containing the loadings in each mode and
some statistics like R-squared and the sum of squared error.
set.seed(0) # for reproducibility
model = parafac(processedFujita$data, nfac=3, verbose=FALSE)
head(model$Fac[[1]])
#> [,1] [,2] [,3]
#> [1,] -258.9 255.0 434
#> [2,] -89.8 -224.2 380
#> [3,] 1163.1 30.1 471
#> [4,] -194.3 765.0 -1767
#> [5,] -102.8 -60.4 205
#> [6,] -85.8 119.7 198
head(model$Fac[[2]])
#> [,1] [,2] [,3]
#> [1,] 0.0497 -0.0128 0.0854
#> [2,] 0.0114 0.0406 -0.0601
#> [3,] 0.0112 -0.0626 -0.0880
#> [4,] 0.0125 -0.0719 -0.0877
#> [5,] 0.0156 -0.0637 0.0562
#> [6,] 0.0216 0.0443 -0.0689
head(model$Fac[[3]])
#> [,1] [,2] [,3]
#> [1,] -0.0122 -0.000354 0.000903
#> [2,] -0.0142 -0.000753 -0.000156
#> [3,] -0.0133 -0.002270 0.001130
#> [4,] -0.0132 -0.001346 -0.000257
#> [5,] -0.0121 -0.000251 -0.000366
#> [6,] -0.0123 -0.000259 -0.000421
model$varExp
#> [1] 38.1
This model explains 38.113 percent of the variation in the processed data cube.
We have implemented the plotPARAFACmodel()
function to
allow the user full control over how they want to visualize their model.
As such, there are a lot of plotting options that can be used, which you
can see below. A brief overview:
For a full overview, please refer to the documentation of
plotPARAFACmodel()
.
plotPARAFACmodel(model$Fac, processedFujita,
numComponents = 3,
colourCols = c("", "Genus", ""),
legendTitles = c("", "Genus", ""),
xLabels = c("Replicate", "Feature index", "Time point"),
legendColNums = c(0,5,0),
arrangeModes = c(FALSE, TRUE, FALSE),
continuousModes = c(FALSE,FALSE,TRUE),
overallTitle = "Fujita PARAFAC model")
This concludes the introduction to the
parafac4microbiome
package. We hope this gives you
sufficient information to get started. For more details on modelling
specific datasets, please refer to
vignette("Fujita2023_analysis")
,
vignette("Shao2019_analysis")
and
vignette("vanderPloeg2024_analysis")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.