The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
First we load the pcds
package:
For illustration of construction of PCDs and related quantities, we first focus on one Delaunay cell, which is a tetrahedron in the 3D setting. Due to geometry invariance of PE- and CS-PCDs with vertices from uniform distribution in a tetrahedron in \(\mathbb R^3\), most data generation and computations can be done in the standard regular tetrahedron, and for AS-PCD, one can restrict attention to the basic tetrahedron. Here, we only consider the PE-PCD with vertices being 3D data points, extension of the other PCDs is left for future work. The standard regular tetrahedron is \(T_{reg}=T(A,B,C,D)\) with vertices \(A=(0,0,0)\), \(B=(1,0,0)\), and \(C=\left(1/2,\sqrt{3}/2,0\right)\), and \(D=\left(1/2,\sqrt{3}/6,\sqrt{6}/3\right)\).
For more detail on the extension of PCDs to higher dimensions, see Ceyhan (2005), Ceyhan, Priebe, and Wierman (2006), Ceyhan, Priebe, and Marchette (2007), and Ceyhan and Priebe (2007).
We first choose an arbitrary tetrahedron. We choose the arbitrary tetrahedron \(T=T(A,B,C,D)\) with vertices jittered around the vertices of the standard regular tetrahedron (for better visualization).
set.seed(1)
A<-c(0,0,0)+runif(3,-.25,.25);
B<-c(1,0,0)+runif(3,-.25,.25);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.25,.25);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.25,.25)
tetra<-rbind(A,B,C,D)
n<-5 #try also n<-10 or 20
And we generate \(n=\) 5 \(\mathcal{X}\) points uniformly
in the tetrahedron \(T\) using the function runif.tetra
in pcds
.
One can use the center of mass (default) or the circumcenter of the tetrahedron to construct the vertex regions.
\(\mathcal{X}\) points are denoted as Xp
and \(\mathcal{Y}\) points correspond to the vertices of the tetrahedron \(T\) (i.e. \(\{A,B,C,D\}\)).
Plot of the tetrahedron \(T\) and the \(\mathcal{X}\) points in it,
and we also add the vertex names using the text3D
function from package plot3D
.
xlim<-range(tetra[,1],Xp[,1])
ylim<-range(tetra[,2],Xp[,2])
zlim<-range(tetra[,3],Xp[,3])
xr<-xlim[2]-xlim[1]
yr<-ylim[2]-ylim[1]
zr<-zlim[2]-zlim[1]
plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi=0,theta=-60, bty = "g",main="Points in One Tetrahedron",
xlab="x", ylab="y", zlab="z", xlim=xlim+xr*c(-.05,.05), ylim=ylim+yr*c(-.05,.05),
zlim=zlim+zr*c(-.05,.05), pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add = TRUE)
A<-tetra[1,]; B<-tetra[2,]; C<-tetra[3,]; D<-tetra[4,]
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=1,lty=2)
#now we add the vertex names and annotation
txt<-tetra
xc<-txt[,1]+c(-.02,.02,-.15,.02)
yc<-txt[,2]+c(.02,.02,.02,.02)
zc<-txt[,3]+c(-.04,.02,.02,.02)
txt.str<-c("A","B","C","D")
plot3D::text3D(xc,yc,zc,txt.str, add = TRUE)
We use the same tetrahedron \(T\) and the generated data above,
and choose the expansion parameter \(r=1.5\)
and center M="CM"
to illustrate the PE proximity region construction.
The function NPEtetra
is used for the construction of PE proximity regions taking the arguments
p,th,r,M,rv
where
p
, a 3D point whose PE proximity region is to be computed,r
, a positive real number which serves as the expansion parameter in PE proximity region; must be \(\ge 1\).th
, A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron,M
, the center to be used in the construction of the vertex regions in the tetrahedron, th
,
Currently it only takes "CC"
for circumcenter and "CM"
for center of mass; default="CM"
,rv
, the index of the vertex region containing the point, either 1,2,3,4
(default is NULL
).NPEtetra
returns the proximity region as the the vertices of the tetrahedron proximity region.
M<-"CM" #try also M<-"CC"
r<-1.5
NPEtetra(Xp[1,],tetra,r) #uses the default M="CM"
#> [,1] [,2] [,3]
#> [1,] 0.72233763 0.9464243 0.06455702
#> [2,] 0.06169821 0.1514047 0.04242222
#> [3,] 1.10142305 0.0843472 0.17049892
#> [4,] 0.37498004 0.3131847 0.52897936
Indicator for the presence of an arc from a (data or \(\mathcal{X}\)) point to another for PE-PCDs is the function IarcPEtetra
which takes arguments p1,p2,th,r,M,rv
where
p1
, a 3D point whose PE proximity region is constructed.p2
, a 3D point. The function determines whether p2
is inside the PE proximity region of p1
or not.th,r,M,rv
are as in NPEtetra
.This function returns \(I(p_2 \in N_{PE}(p_1,r))\),
that is, returns 1 if p2
is in \(N_{PE}(p_1,r)\), 0 otherwise.
One can use it for points in the data set or for arbitrary points (as if they were in the data set).
IarcPEtetra(Xp[1,],Xp[2,],tetra,r) #uses the default M="CM"
#> [1] 1
IarcPEtetra(Xp[2,],Xp[1,],tetra,r,M)
#> [1] 1
Number of arcs of the PE-PCD can be computed by the function num.arcsPEtetra
,
which is an object of class “NumArcs
” and takes arguments Xp,th,r,M
where Xp
is the data set, and th,r,M
are as in NPEtetra
.
This function returns the list of
desc
: A description of the PCD and the outputnum.arcs
: Number of arcs of the PE-PCD,num.in.tetra
: Number of Xp
points in the tetrahedron tetra
,ind.in.tetra
: The vector of indices of the Xp
points that reside in the tetrahedron.tess.points
: Vertices of the tetrahedron (i.e. Yp
points)vertices
: vertices of the PCD (i.e. Xp
points)The output is as in num.arcsPEtri
.
Narcs = num.arcsPEtetra(Xp,tetra,r,M)
summary(Narcs)
#> Call:
#> num.arcsPEtetra(Xp = Xp, th = tetra, r = r, M = M)
#>
#> Description of the output:
#> Number of Arcs of the PE-PCD with vertices Xp and Quantities Related to the Support Tetrahedron
#>
#> Number of data (Xp) points in the tetrahedron = 5
#> Number of arcs in the digraph = 10
#>
#> Indices of data points in the tetrahedron:
#> 1 2 3 4 5
#>
#plot(Narcs) #gives error
The arc density of the PE-PCD can be computed by the function PEarc.dens.tetra
.
It takes the arguments Xp,th,r,M,th.cor
where Xp,th,r,M
are as in num.arcsPEtetra
and th.cor
is a logical argument for computing the arc density for only the points inside the tetrahedron,
th
. (default is th.cor=FALSE
), i.e., if th.cor=TRUE
only the induced digraph
with the vertices inside th
are considered in the computation of arc density.
Arc density can be adjusted (or corrected) for the points outside the triangle by using the option th.cor=TRUE
.
The incidence matrix of the PE-PCD for the one tetrahedron case can be found by inci.matPEtetra
,
using the inci.matPEtetra(Xp,tetra,r,M)
command.
It has the same arguments as num.arcsPEtetra
function.
Plots of the PE proximity region for one of the \(\mathcal{X}\) points only (for better visualization).
We first define the standard regular tetrahedron \(T_{reg}\) as in Section 1.
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10 #try also n<-20
And we generate \(\mathcal{X}\) points of size \(n=\) 5 using the function runif.std.tetra
in the pcds
package,
and use either center of mass (default) or the circumcenter of \(T_{reg}\) to construct vertex regions.
Plot of the standard regular tetrahedron \(T_{reg}\) and the \(\mathcal{X}\) points in it are provided
using the below code.
We also add the vertex names using the text3D
function from package plot3D
.
xlim<-range(tetra[,1],Xp[,1])
ylim<-range(tetra[,2],Xp[,2])
zlim<-range(tetra[,3],Xp[,3])
xr<-xlim[2]-xlim[1]
yr<-ylim[2]-ylim[1]
zr<-zlim[2]-zlim[1]
plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi=0,theta=-60, bty = "g",main="Points in the Standard Regular Tetrahedron",
xlab="x", ylab="y", zlab="z", xlim=xlim+xr*c(-.05,.05), ylim=ylim+yr*c(-.05,.05),
zlim=zlim+zr*c(-.05,.05), pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add = TRUE)
A<-tetra[1,]; B<-tetra[2,]; C<-tetra[3,]; D<-tetra[4,]
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=1,lty=2)
#now we add the vertex names and annotation
txt<-tetra
xc<-txt[,1]+c(-.01,.02,-.12,.02)
yc<-txt[,2]+c(.02,.02,.02,-.01)
zc<-txt[,3]+c(-.04,.02,.02,.02)
txt.str<-c("A","B","C","D")
plot3D::text3D(xc,yc,zc,txt.str, add = TRUE)
The function NPEstd.tetra
is used for the construction of PE proximity regions for points in \(T_{reg}\)
taking arguments p,r,rv
which are same as in NPEtetra
.
This function returns the proximity region as the the vertices of the tetrahedron proximity region.
Center of mass is equivalent to circumcenter for \(T_{reg}\), so no argument is specified for the center.
r<-1.5
NPEstd.tetra(Xp[1,],r)
#> [,1] [,2] [,3]
#> [1,] 0.5000000 0.8660254 0.0000000
#> [2,] 0.1618881 0.2803983 0.0000000
#> [3,] 0.5000000 0.4756074 0.5521345
#> [4,] 0.8381119 0.2803983 0.0000000
NPEstd.tetra(Xp[5,],r)
#> [,1] [,2] [,3]
#> [1,] 1.00000000 0.0000000 0.0000000
#> [2,] 0.52499658 0.8227301 0.0000000
#> [3,] 0.52499658 0.2742434 0.7756773
#> [4,] 0.04999316 0.0000000 0.0000000
Indicator for the presence of an arc from a (data or \(\mathcal{X}\)) point to another for PE-PCDs is the function IarcPEstd.tetra
which takes arguments p1,p2,r,rv
and
returns \(I(p_2 \in N_{PE}(p_1,r))\) which are same as in IarcPEtetra
.
One can use it for points in the data set or for arbitrary points (as if they were in the data set).
Plots of the PE proximity regions for all points can be obtained with the below code:
We only use circumcenter (CC) or center of mass (CM) to construct vertex regions in a tetrahedron,
and here we illustrate finding CC (as CM is just the componentwise arithmetic average of the vertices)
of a tetrahedron.
The function circumcenter.tetra
takes the sole argument th
for a \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron and returns the circumcenter of a general tetrahedron.
We use a tetrahedron \(T\) whose vertices are jittered around the vertices of a standard regular tetrahedron for better visualization
in the plots.
set.seed(123)
A<-c(0,0,0)+runif(3,-.2,.2);
B<-c(1,0,0)+runif(3,-.2,.2);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.2,.2);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.2,.2);
tetra<-rbind(A,B,C,D)
CC<-circumcenter.tetra(tetra)
CC
#> [1] 0.5516851 0.3386671 0.1212977
We can also illustrate the CC in a tetrahedron in a plot with vertex and CC annotation.
Type ? circumcenter.tetra
for the code to generate the corresponding figure.
The function rel.vert.tetraCC
takes arguments p,th
and
returns the index of the \(CC\)-vertex region in a tetrahedron th
where the point p
resides.
n<-10 #try also n<-20
Xp<-runif.tetra(n,tetra)$g
rel.vert.tetraCC(Xp[1,],tetra)
#> $rv
#> [1] 2
#>
#> $tetra
#> [,1] [,2] [,3]
#> vertex 1 -0.08496899 0.1153221 -0.03640923
#> vertex 2 1.15320696 0.1761869 -0.18177740
#> vertex 3 0.51124220 1.0229930 0.02057401
#> vertex 4 0.48264589 0.4714085 0.79783024
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.tetraCC(Xp[i,],tetra)$rv)
Rv
#> [1] 2 2 1 3 2 1 2 3 2 1
We also generate \(n=\) 5 \(\mathcal{X}\) points uniformly in the tetrahedron and find the indices of the vertex regions they reside in.
We illustrate the CC-vertex regions using the following code.
We annotate the vertices and CC and provide the scatterplot of these points labeled according to the vertex region they reside in.
Type also ? rel.vert.tetraCC
for the code to generate this figure.
CC<-circumcenter.tetra(tetra)
CC
Xlim<-range(tetra[,1],Xp[,1],CC[1])
Ylim<-range(tetra[,2],Xp[,2],CC[2])
Zlim<-range(tetra[,3],Xp[,3],CC[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3], phi =0,theta=40, bty = "g",
main="Scatterplot of data points with CC-vertex regions",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
#add the data points
plot3D::points3D(Xp[,1],Xp[,2],Xp[,3],pch=".",cex=3, add=TRUE)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3], labels=c("A","B","C","D"), add=TRUE)
plot3D::text3D(CC[1],CC[2],CC[3], labels=c("CC"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CC,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty=2)
F1<-intersect.line.plane(A,CC,B,C,D)
L<-matrix(rep(F1,4),ncol=3,byrow=TRUE); R<-rbind(D4,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=2, add=TRUE,lty=2)
F2<-intersect.line.plane(B,CC,A,C,D)
L<-matrix(rep(F2,4),ncol=3,byrow=TRUE); R<-rbind(D2,D3,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=3, add=TRUE,lty=2)
F3<-intersect.line.plane(C,CC,A,B,D)
L<-matrix(rep(F3,4),ncol=3,byrow=TRUE); R<-rbind(D3,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=4, add=TRUE,lty=2)
F4<-intersect.line.plane(D,CC,A,B,C)
L<-matrix(rep(F4,4),ncol=3,byrow=TRUE); R<-rbind(D1,D2,D4,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=5, add=TRUE,lty=2)
plot3D::text3D(Xp[,1],Xp[,2],Xp[,3], labels=factor(Rv), add=TRUE)
The function rel.vert.tetraCM
takes the same arguments as rel.vert.tetraCC
and
returns the index of the \(CM\)-vertex region in a tetrahedron th
where the point p
resides.
We use standard regular tetrahedron in this example.
#The index of the $CM$-vertex region in a tetrahedron that contains a point
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10 #try also n<-20
Xp<-runif.std.tetra(n)$g
rel.vert.tetraCM(Xp[1,],tetra)
#> $rv
#> [1] 4
#>
#> $tetra
#> [,1] [,2] [,3]
#> vertex 1 0.0 0.0000000 0.0000000
#> vertex 2 1.0 0.0000000 0.0000000
#> vertex 3 0.5 0.8660254 0.0000000
#> vertex 4 0.5 0.2886751 0.8164966
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv, rel.vert.tetraCM(Xp[i,],tetra)$rv )
Rv
#> [1] 4 4 3 4 4 1 1 3 3 2
We also generate \(n=\) 5 \(\mathcal{X}\) points in the tetrahedron and find the indices of the vertex regions they reside in.
We can also illustrate the CC in a tetrahedron in a plot with vertex and CC annotation.
Type ? rel.vert.tetraCM
for the code to generate the corresponding figure.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.