The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
pestr
Package is a set of functions and wrappers that allow painless and quick data retrieval on pests and their hosts from EPPO Data Services and EPPO Global Database. First of all, it allows extraction of scientific names of organisms (and viruses), as well as synonyms and common names from SQLite database. The data base can be easily downloaded with eppo_database_download()
function. Second, there are four functions in the package that use REST API to extract data on hosts, categorization and taxonomy and pests. Further, there is a function that downloads data csv files containing information on organisms (and viruses) distribution. Important feature is that the csv are never saved onto hard drive, instead they are directly used to create data.frame
that can be assigned to a variable in R. Beside above features, this package provides some other helper functions e.g. connecting to database or storing EPPO token as variable.
token
and connecting to SQLite databaseIn order to start working with pestr package, you should register yourself (free of charge) to EPPO Data Services. Then run create_eppo_token
and assign results to a variable which will be used by functions that connect to REST API.
<- create_eppo_token('<<your_EPPO_token>>') eppo_token
Next, you can run eppo_database_download
function that will download (by default to your working directory, which can be override with filepath
argument) archive with the SQLite file. If you are on Linux operating system, file will be extracted into your working directory (or other directory provided in filepath
argument). On Windows you will be asked to extract the database file manually.
eppo_database_download()
Last step of setup is to connect to database file, which can be easily done with eppo_database_connect
function.
<- eppo_database_connect() eppo_SQLite
With this three short steps you are ready to go.
Currently searching for pest names supports scientific names, synonyms and common names. By default search will work with partial names – e.g. when you query for Cydia packardi you get information related to this species, while when you query for Cydia you get information on whole genus. Likewise, when you search for Droso you will get information on all species that contain Droso in their names. Moreover you can pass whole vector of terms in one shot, e.g. c('Xylella', 'Cydia packardi', 'Droso')
.
# Create vector of names that you are looking for
<- c('Cydia', "Triticum aestivum", "abcdef", "cadang") pests_query
Than you should start with querying for names and assigning your results to a variable. This variable will contain eppocodes
that are used by other functions to extract data from EPPO REST API. eppo_names_tables
takes two arguments: first is a vector of names to query the database, second is variable with connection to SQLite database.
<- eppo_names_tables(pests_query, eppo_SQLite)
pest_names names(pest_names)
#names that exist in database
head(pest_example[[1]], 5)
#names that were not found
head(pest_example[[2]], 5)
#preferred names for eppocodes from first table
head(pest_example[[3]], 5)
#all names that are associated to eppocodes from first data frame
head(pest_example[[4]], 5)
#> [1] "exist_in_DB" "not_in_DB" "pref_names"
#> [4] "all_associated_names"
codeid | fullname |
---|---|
6698 | Cydia pomonella |
8607 | Cydia inopinata |
8608 | Cydia leucostoma |
8609 | Cydia sp. |
9907 | Ephialtes cydiae |
codeid | fullname | eppocode |
---|---|---|
6698 | Cydia pomonella | CARPPO |
8607 | Grapholita inopinata | CYDIIN |
8608 | Cydia leucostoma | CYDILE |
8609 | Cydia sp. | CYDISP |
9907 | Ephialtes cydiae | EPHICY |
codeid | fullname | preferred | codelang | eppocode |
---|---|---|---|---|
6698 | æblevikler | 0 | da | CARPPO |
6698 | Obstmade | 0 | de | CARPPO |
6698 | carpocapse des pommes | 0 | fr | CARPPO |
6698 | pyrale de la pomme | 0 | fr | CARPPO |
6698 | ver des pommes et des poires | 0 | fr | CARPPO |
As a result you will get list
containing 3 data.frames
and vector
:
exist_in_DB
– data.frame
with names that are present in EPPO Data Services;not_in_DB
– vector
with names that are not present in database;pref_names
– data.frame
with preferred names and eppocodes
,all_associated_names
– data.frame
with all associated names to eppocodes
from third data.frame
.REMEMBER: Other eppo_tabletools_
functions use results of this function or raw eppocodes to access data from EPPO Global Database and EPPO Data Services.
eppo_tabletools_
functions to extract categorization, hosts, taxonomy, distribution and pestsThis functions works separately from each other, thus there is no need to use all of them. There is no need to use them in any particular order. Functions for categorization, hosts taxonomy and pests takes two arguments:
names_table
– variable containing result of eppo_names_tables
;token
– variable created with create_eppo_token
OR three arguments:
token
– same as above;raw_eppocodes
– character vector of eppocodes (e.q. `c(“XYLEFA”, “ABIAL”));use_raw_codes
– logical set to TRUE.As result eppo_tabletools_cat
you will get list
with two elements:
data.frame
with categorization tablesdata.frame
with categorization for each eppocode condensed to single cell.<- eppo_tabletools_cat(pest_names, eppo_token)
pests_cat #long format table
head(pests_cat[[1]], 5)
#comapct table with information for each eppocode condensed into one cell
head(pests_cat[[2]],5)
eppocode | nomcontinent | isocode | country | qlist | qlistlabel | yr_add | yr_del | yr_trans |
---|---|---|---|---|---|---|---|---|
CARPPO | Africa | EG | Egypt | 2 | A2 list | 2018 | NA | NA |
CARPPO | Africa | 3G | Southern Africa | 2 | A2 list | 2001 | NA | NA |
CARPPO | America | CA | Canada | X | Quarantine pest | 2019 | NA | NA |
CARPPO | Asia | BH | Bahrain | 1 | A1 list | 2003 | NA | NA |
CARPPO | Asia | CN | China | 1 | A1 list | 1993 | NA | NA |
eppocode | categorization |
---|---|
CARPPO | Africa: Egypt: A2 list: add/del/trans: 2018/NA/NA; Southern Africa: A2 list: add/del/trans: 2001/NA/NA | America: Canada: Quarantine pest: add/del/trans: 2019/NA/NA | Asia: Bahrain: A1 list: add/del/trans: 2003/NA/NA; China: A1 list: add/del/trans: 1993/NA/NA | RPPO/EU: APPPC: A2 list: add/del/trans: 1993/NA/NA |
CYDIIN | Africa: Egypt: A1 list: add/del/trans: 2018/NA/NA; Morocco: Quarantine pest: add/del/trans: 2018/NA/NA; Tunisia: Quarantine pest: add/del/trans: 2012/NA/NA | America: Canada: Quarantine pest: add/del/trans: 2019/NA/NA; Mexico: Quarantine pest: add/del/trans: 2018/NA/NA | Asia: Bahrain: A1 list: add/del/trans: 2003/NA/NA; Israel: Quarantine pest: add/del/trans: 2009/NA/NA; Jordan: A1 list: add/del/trans: 2013/NA/NA | Europe: Turkey: A1 list: add/del/trans: 2016/NA/NA; Ukraine: A1 list: add/del/trans: 2019/NA/NA | RPPO/EU: EPPO: A2 list: add/del/trans: 1994/NA/1999; EU: A1 Quarantine pest (Annex II A): add/del/trans: 2019/NA/NA |
CYDILE | NA: NA: NA: add/del/trans: NA/NA/NA |
CYDISP | NA: NA: NA: add/del/trans: NA/NA/NA |
EPHICY | NA: NA: NA: add/del/trans: NA/NA/NA |
If you will to limit the data received from EPPO Data Services, and you are confident that you know exactly what you are looking for, you can use eppocodes directly.
<- eppo_tabletools_cat(token = eppo_token,
pests_cat raw_eppocodes = c("LASPPA", "TRZAX", "CCCVD0"),
use_raw_codes = TRUE)
2]] pest_cat[[
eppocode | categorization |
---|---|
LASPPA | Africa: Egypt: A1 list: add/del/trans: 2018/NA/NA; Morocco: Quarantine pest: add/del/trans: 2018/NA/NA; Tunisia: Quarantine pest: add/del/trans: 2012/NA/NA | America: Mexico: Quarantine pest: add/del/trans: 2018/NA/NA | Asia: Bahrain: A1 list: add/del/trans: 2003/NA/NA; Israel: Quarantine pest: add/del/trans: 2009/NA/NA; Jordan: A1 list: add/del/trans: 2013/NA/NA | Europe: Russia: A1 list: add/del/trans: 2014/NA/NA; Turkey: A1 list: add/del/trans: 2016/NA/NA; Ukraine: A1 list: add/del/trans: 2019/NA/NA | RPPO/EU: EAEU: A1 list: add/del/trans: 2018/NA/NA; EPPO: A1 list: add/del/trans: 1995/NA/NA; EU: A1 Quarantine pest (Annex II A): add/del/trans: 2019/NA/NA |
TRZAX | NA: NA: NA: add/del/trans: NA/NA/NA |
CCCVD0 | Africa: Egypt: Regulated non-quarantine pest: add/del/trans: 2018/NA/NA; Morocco: Quarantine pest: add/del/trans: 2018/NA/NA | America: Argentina: A1 list: add/del/trans: 2019/NA/NA; Brazil: A1 list: add/del/trans: 2018/NA/NA; Chile: A1 list: add/del/trans: 2019/NA/NA; Mexico: Quarantine pest: add/del/trans: 2018/NA/NA; United States of America: Quarantine pest: add/del/trans: 1989/NA/NA | Asia: Bahrain: A1 list: add/del/trans: 2003/NA/NA; China: A2 list: add/del/trans: 1988/NA/NA; Israel: Quarantine pest: add/del/trans: 2009/NA/NA | Europe: Turkey: A1 list: add/del/trans: 2016/NA/NA | RPPO/EU: APPPC: A2 list: add/del/trans: 1988/NA/NA; CAHFSA: A1 list: add/del/trans: 1990/NA/NA; COSAVE: A2 list: add/del/trans: 2018/NA/NA; EPPO: A1 list: add/del/trans: 1994/NA/NA; EU: A1 Quarantine pest (Annex II A): add/del/trans: 2019/NA/NA; PPPO: A2 list: add/del/trans: 1993/NA/NA |
eppo_tabletools_hosts
as a result returns a list
of two data.frame
:
<- eppo_tabletools_hosts(pest_names, eppo_token)
pests_hosts
head(pests_hosts[[1]], 5)
head(pests_hosts[[2]], 5)
eppocode | codeid | host_eppocode | idclass | labelclass | full_name |
---|---|---|---|---|---|
CARPPO | 37021 | MABSD | 1 | Major host | Malus domestica |
CARPPO | 29214 | CYDOB | 9 | Host | Cydonia oblonga |
CARPPO | 35259 | IUGRE | 9 | Host | Juglans regia |
CARPPO | 41521 | PRNAR | 9 | Host | Prunus armeniaca |
CARPPO | 41563 | PRNDO | 9 | Host | Prunus domestica |
eppocode | hosts |
---|---|
CARPPO | Major host: Malus domestica; Host: Cydonia oblonga, Juglans regia, Prunus armeniaca, Prunus domestica, Prunus dulcis, Prunus persica, Pyrus communis |
CYDIIN | Major host: Malus domestica; Wild/Weed: Malus baccata; Host: Cydonia oblonga, Malus, Pyrus, Pyrus communis; Experimental: Prunus |
CYDILE | Host: NA |
CYDISP | Host: NA |
EPHICY | Host: NA |
eppo_tabletools_taxo
as other functions from this family returns a list
with two data.frame
:
Suppose, that from previous name query we are interested only in viroids and viruses. As they usually have a viroid or virus phrase in their name, we can simply limit the query to certain eppocodes.
<- pest_names$all_associated_names %>%
virs_eppocodes ::filter(grepl("viroid", fullname) | grepl("virus", fullname)) %>%
dplyr5] %>% #eppocodes are in 5th column
.[,unique()
We can now pass virs_eppocodes
as raw_eppocodes
argument, and in consequence receive taxonomy of viroids and viruses only.
<- eppo_tabletools_taxo(token = eppo_token,
virs_taxonomy raw_eppocodes = virs_eppocodes,
use_raw_codes = TRUE)
$long_table #you can also access list elements by their names
virs_taxonomy$compact_table virs_taxonomy
codeid | eppocode | prefname | level |
---|---|---|---|
60969 | CPGV00 | Viruses and viroids | 1 |
64582 | CPGV00 | Baculoviridae | 2 |
84121 | CPGV00 | Betabaculovirus | 3 |
65443 | CPGV00 | Cydia pomonella granulovirus | 4 |
60969 | CCCVD0 | Viruses and viroids | 1 |
111354 | CCCVD0 | Riboviria | 2 |
65268 | CCCVD0 | Pospiviroidae | 3 |
65799 | CCCVD0 | Cocadviroid | 4 |
64718 | CCCVD0 | Coconut cadang-cadang viroid | 5 |
eppocode | taxonomy |
---|---|
CPGV00 | Baculoviridae |
CCCVD0 | Riboviria |
It is possible to obtain data on pests of particular hosts with function eppo_tabletools_pests
. Lets say we want to know all the pests associated with Abies alba (eppocode: ABIAL).
<- eppo_tabletools_pests(token = eppo_token,
abies_pests raw_eppocodes = "ABIAL",
use_raw_codes = TRUE)
head(abies_pests[[1]], 5)
head(abies_pests[[2]], 5)
eppocode | pests_eppocode | idclass | labelclass | fullname |
---|---|---|---|---|
ABIAL | MELMME | 10 | Experimental | Melampsora medusae (as Abies) |
ABIAL | MELMMD | 10 | Experimental | Melampsora medusae f. sp. deltoidis (as Abies) |
ABIAL | ACLRGL | 9 | Host | Acleris gloverana (as Abies) |
ABIAL | ACLRVA | 9 | Host | Acleris variana (as Abies) |
ABIAL | AREAB | 9 | Host | Arceuthobium abietinum (as Abies) |
eppocode | pests |
---|---|
ABIAL | Experimental: Melampsora medusae (as Abies), Melampsora medusae f. sp. deltoidis (as Abies); Host: Acleris gloverana (as Abies), Acleris variana (as Abies), Arceuthobium abietinum (as Abies), Arceuthobium douglasii (as Abies), Arceuthobium laricis (as Abies), Arceuthobium tsugense (as Abies), Bursaphelenchus xylophilus (as Abies), Chionaspis pinifoliae, Chionaspis pinifoliae (as Abies), Choristoneura freemani (as Abies), Choristoneura fumiferana (as Abies), Chrysomyxa abietis (as Abies), Coniferiporia weirii (as Pinaceae), Crisicoccus pini (as Abies), Dendroctonus micans, Dendrolimus sibiricus (as Abies), Dendrolimus spectabilis (as Abies), Dendrolimus superans (as Abies), Dothistroma septosporum, Dryocoetes confusus (as Abies), Gnathotrichus sulcatus (as Pinaceae), Gremmeniella abietina (as Abies), Heterobasidion irregulare (as Abies), Ips amitinus, Ips amitinus (as Abies), Ips subelongatus (as Abies), Ips typographus, Leptoglossus occidentalis (as Abies), Malacosoma disstria (as Abies), Monochamus alternatus (as Abies), Monochamus marmorator (as Abies), Monochamus obtusus (as Abies), Monochamus saltuarius (as Abies), Monochamus scutellatus (as Abies), Monochamus sutor (as Abies), Monochamus titillator (as Abies), Monochamus urussovi (as Abies), Phacidium coniferarum (as Abies), Phytophthora cinnamomi (as Pinaceae), Phytophthora ramorum, Pissodes castaneus, Polygraphus proximus (as Abies), Sirex ermak (as Abies), Sirex noctilio (as Abies), Tetropium gracilicorne (as Abies), Trichoferus campestris (as Abies); Major host: Chrysomyxa abietis, Monochamus sutor, Neonectria neomacrospora |
eppo_tabletools_distri
does not connect to REST API, but it downloads information from csv files directly from EPPO Global Database. As a consequence there is no token
argument (since it does not need the EPPO token) – a variable containing result of eppo_names_tables
. The function returns a two element list
:
dataframe
with distribution for organism/virus, including invalid records and eradicated status;<- eppo_tabletools_distri(pest_names)
pest_distri head(pestr_distri[[1]], 5)
head(pestr_distri[[2]], 5)
eppocode | continent | country | state | country.code | state.code | Status |
---|---|---|---|---|---|---|
CARPPO | Africa | Algeria | NA | DZ | NA | Present, no details |
CARPPO | Africa | Egypt | NA | EG | NA | Present, no details |
CARPPO | Africa | Libya | NA | LY | NA | Present, no details |
CARPPO | Africa | Mauritius | NA | MU | NA | Present, no details |
CARPPO | Africa | Morocco | NA | MA | NA | Present, no details |
eppocode | distribution |
---|---|
CARPPO | Africa: Algeria, Egypt, Libya, Mauritius, Morocco, South Africa, Tunisia; America: Argentina, Bolivia, Brazil, Canada, Chile, Colombia, Mexico, Peru, United States of America, Uruguay; Asia: Afghanistan, China, India, Iran, Iraq, Israel, Jordan, Kazakhstan, Kyrgyzstan, Lebanon, Pakistan, Syria, Tajikistan, Turkmenistan, Uzbekistan; Europe: Albania, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Malta, Moldova, Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom; Oceania: Australia, New Zealand |
CYDIIN | Asia: China, Japan; Europe: Russia |
CYDILE | NA: NA |
CYDISP | NA: NA |
EPHICY | NA: NA |
eppo_tabletools_pests
):Last, but not least, package offers a simple wrapper over above mentioned functions. If you want to make one table with all the informations: names, categorization, hosts, distribution and taxonomy – condensed to one cell per pest, please use eppo_table_full
function that takes arguments:
names vector
– a character vector of pests/hosts names;sqlConnection
– a variable for SQLite connection (result of eppo_database_connect
);token
– an variable storing EPPO token (eppo_token
).<- eppo_table_full(c("Meloidogyne ethiopica", "Crataegus mexicana"),
eppo_fulltable
eppo_SQLite,
eppo_token)
eppo_fulltable
codeid | eppocode | Preferred_name | Other_names | hosts | categorization | distribution | taxonomy |
---|---|---|---|---|---|---|---|
84193 | CSCME | Crataegus mexicana | Other languages: aubépine du Mexique, Mexican hawthorn, tejocote | Host: NA | NA: NA: NA: add/del/trans: NA/NA/NA | NA: NA | Plantae |
79276 | MELGET | Meloidogyne ethiopica | Other languages: root-knot nematode | Major host: Actinidia chinensis, Actinidia deliciosa, Solanum lycopersicum, Vitis labrusca, Vitis vinifera; Wild/Weed: Ageratum conyzoides, Datura stramonium, Solanum nigrum; Host: Acacia mearnsii, Agave sisalana, Asparagus officinalis, Beta vulgaris, Brassica oleracea, Capsicum frutescens, Citrullus lanatus, Cucumis melo, Cucumis sativus, Cucurbita, Ensete ventricosum, Glycine max, Lactuca sativa, Nicotiana tabacum, Phaseolus vulgaris, Polymnia sonchifolia, Prunus persica, Saccharum officinarum, Sida rhombifolia, Solanum tuberosum, Vicia faba, Vigna unguiculata | Africa: Morocco: Quarantine pest: add/del/trans: 2018/NA/NA | RPPO/EU: EPPO: Alert list: add/del/trans: 2011/NA/NA | Africa: Ethiopia, Kenya, Mozambique, South Africa, Tanzania, Zimbabwe; America: Brazil, Chile, Peru | Nematoda |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.