The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Package overview

Francois Keck

2023-10-12

Data

First, we load the package phylosignal and the dataset carnivora from adephylo.

library(phylosignal)
library(adephylo)
library(ape)
library(phylobase)
data(carni19)

Here is a phylogenetic tree of 19 carnivora species.

tre <- read.tree(text=carni19$tre)

And we create a dataframe of 3 traits for the 19 carnivora species.

dat <- list()
dat$mass <- carni19$bm
dat$random <- rnorm(19, sd = 10)
dat$bm <- rTraitCont(tre)
dat <- as.data.frame(dat)

We can combine phylogeny and traits into a phylo4d object.

p4d <- phylo4d(tre, dat)

Visualizing the data

barplot.phylo4d(p4d, tree.type = "phylo", tree.ladderize = TRUE)

Measuring and testing the signal for each trait and different methods

phyloSignal(p4d = p4d, method = "all")
## $stat
##               Cmean           I         K    K.star       Lambda
## mass    0.549388707  0.39210678 0.7127747 0.7154914 9.640762e-01
## random -0.008591412 -0.01054837 0.1710380 0.1656598 6.846792e-05
## bm      0.631997788  0.54900008 1.2066485 1.2041770 1.027115e+00
## 
## $pvalue
##        Cmean     I     K K.star Lambda
## mass   0.002 0.001 0.001  0.001  0.001
## random 0.373 0.311 0.167  0.208  1.000
## bm     0.001 0.001 0.001  0.001  0.001

Assessing the behavior of these methods with this phylogeny along a Brownian-Motion influence gradient

phylosim <- phyloSim(tree = tre, method = "all", nsim = 100, reps = 99)
plot(phylosim, stacked.methods = FALSE, quantiles = c(0.05, 0.95))

plot.phylosim(phylosim, what = "pval", stacked.methods = TRUE)

Assessing the signal depth with correlograms

mass.crlg <- phyloCorrelogram(p4d, trait = "mass")
random.crlg <- phyloCorrelogram(p4d, trait = "random")
bm.crlg <- phyloCorrelogram(p4d, trait = "bm")

plot(mass.crlg)

plot(random.crlg)

plot(bm.crlg)

Locating the signal with LIPA

carni.lipa <- lipaMoran(p4d)
carni.lipa.p4d <- lipaMoran(p4d, as.p4d = TRUE)

barplot.phylo4d(p4d, bar.col=(carni.lipa$p.value < 0.05) + 1, center = FALSE , scale = FALSE)

barplot.phylo4d(carni.lipa.p4d, bar.col = (carni.lipa$p.value < 0.05) + 1, center = FALSE, scale = FALSE)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.