The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Version 1.1.3 (2019-09-17)
- Prediction & Confidence interval: the
pima
and
cima
functions
- Back-transformartion for logarithmic scale outcomes (print &
plot function; thanks to Dr. Morio Aihara).
- CITATION was updated.
- Vignette was updated.
Version 1.1.2 (2019-03-11)
- Prediction interval: the
pima
function
- Parallel computing for the parametric bootstrap method (see a
Vignette file).
- Forest plot (see a Vignette file).
- Kenward-Roger’s approach.
- Confidence interval: the
cima
function
- A Wald-type t-distribution confidence interval. Variance estimator
of the average effect: an approximate estimator. Heterogeneity variance:
Dersimonian-Laird estimator.
- A Wald-type t-distribution confidence interval. Variance estimator
of the average effect: an approximate, Hartung-Knapp, Sidik-Jonkman,
Kenward-Roger estimators. Heterogeneity variance: REML estimator.
- Profile likelihood confidence interval.
- Profile likelihood confidence interval with a Bartlett type
correction.
- Forest plot.
- Heterogeneity variance estimators: the
tau2h
function
- DerSimonian-Laird estimator.
- Variance component type estimator.
- Paule–Mandel estimator.
- Hartung-Makambi estimator.
- Hunter–Schmidt estimator.
- Maximum likelihood estimator.
- Restricted maximum likelihood estimator.
- Approximate restricted maximum likelihood estimator.
- Sidik–Jonkman estimator.
- Sidik–Jonkman improved estimator.
- Empirical Bayes estimator.
- Bayes modal estimator.
- ML and REML confidence intervals.
- Converting binary data: the
convert_bin
function
- Converting binary data to logarithmic odds ratio (see a Vignette
file).
- Converting binary data to logarithmic relative risk.
- Converting binary data to risk difference.
- The distribution of a positive linear combination of chiqaure random
variables: the
pwchisq
function
Version 1.1.1 (2018-09-15)
Version 1.1.0 (2018-09-14)
- Refined the package structure.
- New function
pima
is available (see a Vignette
file).
Version 1.0.1 (2018-05-11)
- Updated citation informations.
Version 1.0.0 (2018-04-05)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.