The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
pixiedust
In addition to the basic cell-specific customizations covered in the
“pixiedust” vignette (vignette("pixiedust")
),
pixiedust
also supports some more advanced features for
displaying tabular output. Specifically, you can add multi-row headers
and footers; display your tables in multiple divisions; and create cells
that span multiple columns and/or rows.
The presentation of this vignette will be a hybrid of tutorial and
testing environment. Due to the way that pixiedust
generates output, it cannot be directly evaluated for accuracy (this may
change some day, but not right now) and so the best way to see if it is
doing what is expected is to generate the output. The primary tutorial
aspect of this vignette will be covered in the HTML portions, with the
Markdown and Console output being provided mostly to verify that the
output is as expected.
For parts of this vignette, we will work with the mtcars
data frame. But first we make some additions to the data. For
simplicity, we will only use the first ten rows of the data frame.
Additionally, we will add labels to the variables using the
set_label
function from the labelVector
package.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(pixiedust)
mtcars2 <- mtcars[1:10, ]
mtcars2 <-
labelVector::set_label(
mtcars2,
mpg = "Gas Mileage",
cyl = "Cylinders",
disp = "Displacement",
hp = "Horse Power",
drat = "Rear Axle Ratio",
wt = "Weight",
qsec = "1/4 mile time",
vs = "V/S",
am = "Transmission",
gear = "Forward Gears",
carb = "Carburetors")
In other portions of the vignette, we will use a linear model based
on the full mtcars
data set. We will assign the same
variable labels shown above. We will also create a couple of factor
variables to show how factors can be displayed.
The longtable feature is named for the LaTeX package
longtable
, which will automatically break a table into
multiple divisions, each of which is displayed on a separate page. We
can use the long table sprinkle to break a table into divisions of any
size we like. In this example, we’ll use divisions of four rows each. We
will use the same header and footer as the previous example, and we’ll
also make use of the interfoot, which is the footer placed at
the bottom of each intermediate table, while the footer is placed only
at the bottom of the last table. We’ll make use of the multi-cell
feature for the interfoot here, although we won’t really discuss it
until the next section.
The code for this table is nearly identical to the previous example.
We just add a redust
call for the interfoot and add a
longtable
argument to sprinkle_table
.
custom_interfoot <- data.frame("To Be Continued",
"", "", "", "", "", "",
"", "", "", "")
(x <- dust(mtcars2) %>%
redust(custom_head, part = "head") %>%
redust(custom_foot, part = "foot") %>%
redust(custom_interfoot, part = "interfoot") %>%
sprinkle_table(round = 2, longtable = 4) %>%
sprinkle(bg = "gray", part = "head") %>%
sprinkle(bg = "lightgray", part = "foot") %>%
sprinkle(bg = "lightgray", part = "interfoot") %>%
sprinkle_print_method("html"))
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
21 | 6 | 160 | 110 | 3.9 | 2.88 | 17.02 | 0 | 1 | 4 | 4 |
22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 |
21.4 | 6 | 258 | 110 | 3.08 | 3.21 | 19.44 | 1 | 0 | 3 | 1 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
20.37 | 5.8 | 208.61 | 122.8 | 3.54 | 3.13 | 18.58 | 0.6 | 0.3 | 3.6 | 2.5 |
2.91 | 1.48 | 90.37 | 51.45 | 0.44 | 0.41 | 2.14 | 0.52 | 0.48 | 0.52 | 1.35 |
The table above doesn’t look quite right, however, because the “To Be
Continued” appears in one cell when it might look better spread out on a
single line. We can use the merge
sprinkle to merge all of
the cells in the interfoot
in order to make it appear more
fluid.
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
21 | 6 | 160 | 110 | 3.9 | 2.88 | 17.02 | 0 | 1 | 4 | 4 |
22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 |
21.4 | 6 | 258 | 110 | 3.08 | 3.21 | 19.44 | 1 | 0 | 3 | 1 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
20.37 | 5.8 | 208.61 | 122.8 | 3.54 | 3.13 | 18.58 | 0.6 | 0.3 | 3.6 | 2.5 |
2.91 | 1.48 | 90.37 | 51.45 | 0.44 | 0.41 | 2.14 | 0.52 | 0.48 | 0.52 | 1.35 |
The merge
sprinkle may be used to join any number of
conjoined cells. The following example is for illustration only, and
probably wouldn’t be put to use in any meaningful application. What we
will do is merge nine cells and display the value of the center cell.
Take notice of where the value 160
appears in the table
below compared to the table above.
x %>%
sprinkle(merge = TRUE, halign = "center", part = "interfoot") %>%
sprinkle(rows = 1:3, cols = 2:4,
merge = TRUE, merge_rowval = 2, merge_colval = 3,
halign = "center")
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
21 | 160 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 | ||
21 | 3.9 | 2.88 | 17.02 | 0 | 1 | 4 | 4 | |||
22.8 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 | |||
21.4 | 6 | 258 | 110 | 3.08 | 3.21 | 19.44 | 1 | 0 | 3 | 1 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
20.37 | 5.8 | 208.61 | 122.8 | 3.54 | 3.13 | 18.58 | 0.6 | 0.3 | 3.6 | 2.5 |
2.91 | 1.48 | 90.37 | 51.45 | 0.44 | 0.41 | 2.14 | 0.52 | 0.48 | 0.52 | 1.35 |
pixiedust
offers a few options to help simplify the
preparation of model output for tabular display. If you choose to use
the label
functions from the labelVector
package, these labels can be accessed for the table. Additionally, the
levels of factor variables may be printed in a more human-readable
format. (note that the label
functions from the
Hmisc
package may also be used)
fit <- lm(mpg ~ qsec + factor(am) + wt + factor(gear),
data = mtcars)
dust(fit, descriptors = c("label", "level")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("html")
label | level | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 |
Or, if we wish to see the reference value of the factors, we can
request the "level_detail"
descriptor.
dust(fit, descriptors = c("label", "level_detail")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("html")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual vs. Automatic | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 vs. 3 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 vs. 3 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 |
One word of caution: The labels are pulled from the data obtained by
model.frame
, and if you apply a function to a term in your
formula, you might lose the label. Consider the example below, where we
include the vs
variable, but convert it from a numeric to a
factor. If retaining the label is important to you, making your
conversions prior to assigning the labels will be a good habit. Don’t
fret too much, however, as you can always replace a cell’s content with
the replace
sprinkle.
fit <- lm(mpg ~ qsec + am + wt + gear + factor(vs),
data = mtcars)
dust(fit, descriptors = c("label", "level_detail")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("html")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.55 | 9.45 | 1.01 | 0.32 |
NA | Manual vs. Automatic | 3.17 | 2.01 | 1.58 | 0.13 |
NA | 1 vs. 0 | 0.09 | 1.92 | 0.05 | 0.96 |
NA | 4 vs. 3 | -0.29 | 1.77 | -0.17 | 0.87 |
NA | 5 vs. 3 | -0.29 | 2.17 | -0.14 | 0.89 |
NA | 1.23 | 0.51 | 2.39 | 0.025 | |
NA | -3.91 | 0.85 | -4.62 | < 0.001 |
In addition to providing better labeling of terms and factor levels,
pixiedust
allows you to add model fit statistics in a
similar manner that the stargazer
package does. Under the
default settings, we can build these statistics in the following
manner:
fit <- lm(mpg ~ qsec + am + wt + gear,
data = mtcars)
dust(fit, descriptors = c("label", "level_detail"),
glance_foot = TRUE) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle(rows = 1, border = "top") %>%
sprinkle(cols = c(2, 6), round = 2, na_string = "",
part = "foot") %>%
sprinkle(rows = 1, border = "top", part = "foot") %>%
sprinkle_print_method("html")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual vs. Automatic | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 vs. 3 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 vs. 3 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 | |
r.squared | 0.85 | logLik | -72.04 | ||
adj.r.squared | 0.82 | AIC | 158.08 | ||
sigma | 2.55 | BIC | 168.34 | ||
statistic | 29.43 | deviance | 169.1 | ||
p.value | 0 | df.residual | 26 | ||
df | 5 | nobs | 32 |
At times, we may find the volume of these fit statistics overwhelming
and may want to display only a subset of them. This can be done with the
use of the glance_stats
argument in dust
. In
addition to selecting the statistics to display, the order in which they
are displayed may also be controlled.
fit <- lm(mpg ~ qsec + am + wt + gear,
data = mtcars)
dust(fit, descriptors = c("label", "level_detail"),
glance_foot = TRUE,
glance_stats = c("AIC", "adj.r.squared", "BIC", "df"),
byrow = TRUE) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle(rows = 1, border = "top") %>%
sprinkle(cols = c(2, 6), round = 2, na_string = "",
part = "foot") %>%
sprinkle(rows = 1, border = "top", part = "foot") %>%
sprinkle_print_method("html")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual vs. Automatic | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 vs. 3 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 vs. 3 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 | |
AIC | 158.08 | adj.r.squared | 0.82 | ||
BIC | 168.34 | df | 5 |
The console output isn’t as sophisticated as the HTML output, and so not all of the sprinkles applied to the HTML table will show up in the console. Background shading in particular doesn’t appear in the console. Multirow headers and footers still work, however.
The longtable feature is named for the LaTeX package
longtable
, which will automatically break a table into
multiple divisions, each of which is displayed on a separate page. We
can use the long table sprinkle to break a table into divisions of any
size we like. In this example, we’ll use divisions of four rows each. We
will use the same header and footer as the previous example, and we’ll
also make use of the interfoot, which is the footer placed at
the bottom of each intermediate table, while the footer is placed only
at the bottom of the last table. We’ll make use of the multi-cell
feature for the interfoot here, although we won’t really discuss it
until the next section.
The code for this table is nearly identical to the previous example.
We just add a redust
call for the interfoot and add a
longtable
argument to sprinkle_table
.
custom_interfoot <- data.frame("To Be Continued",
"", "", "", "", "", "",
"", "", "", "")
(x <- dust(mtcars2) %>%
redust(custom_head, part = "head") %>%
redust(custom_foot, part = "foot") %>%
redust(custom_interfoot, part = "interfoot") %>%
sprinkle_table(round = 2, longtable = 4) %>%
sprinkle(bg = "gray", part = "head") %>%
sprinkle(bg = "lightgray", part = "foot") %>%
sprinkle(bg = "lightgray", part = "interfoot") %>%
sprinkle_print_method("console"))
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 1 21 6 160 110 3.9 2.62
## 21 21 6 160 110 3.9 2.88
## 3 22.8 4 108 93 3.85 2.32
## 4 21.4 6 258 110 3.08 3.21
## 11 To Be Continued
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 1 16.46 0 1 4 4
## 21 17.02 0 1 4 4
## 3 18.61 1 1 4 1
## 4 19.44 1 0 3 1
## 11
##
##
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 5 18.7 8 360 175 3.15 3.44
## 6 18.1 6 225 105 2.76 3.46
## 7 14.3 8 360 245 3.21 3.57
## 8 24.4 4 146.7 62 3.69 3.19
## 1 To Be Continued
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 5 17.02 0 0 3 2
## 6 20.22 1 0 3 1
## 7 15.84 0 0 3 4
## 8 20 1 0 4 2
## 1
##
##
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 9 22.8 4 140.8 95 3.92 3.15
## 10 19.2 6 167.6 123 3.92 3.44
## 1 20.37 5.8 208.61 122.8 3.54 3.13
## 21 2.91 1.48 90.37 51.45 0.44 0.41
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 9 22.9 1 0 4 2
## 10 18.3 1 0 4 4
## 1 18.58 0.6 0.3 3.6 2.5
## 21 2.14 0.52 0.48 0.52 1.35
The table above doesn’t look quite right, however, because the “To Be
Continued” appears in one cell when it might look better spread out on a
single line. With the HTML output, we could use the merge
sprinkle to merge all of the cells in the interfoot
in
order to make it appear more fluid. However, this feature isn’t
supported by the console, so the best we can get is the text in one
cell.
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 1 21 6 160 110 3.9 2.62
## 21 21 6 160 110 3.9 2.88
## 3 22.8 4 108 93 3.85 2.32
## 4 21.4 6 258 110 3.08 3.21
## 11 To Be Continued
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 1 16.46 0 1 4 4
## 21 17.02 0 1 4 4
## 3 18.61 1 1 4 1
## 4 19.44 1 0 3 1
## 11
##
##
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 5 18.7 8 360 175 3.15 3.44
## 6 18.1 6 225 105 2.76 3.46
## 7 14.3 8 360 245 3.21 3.57
## 8 24.4 4 146.7 62 3.69 3.19
## 1 To Be Continued
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 5 17.02 0 0 3 2
## 6 20.22 1 0 3 1
## 7 15.84 0 0 3 4
## 8 20 1 0 4 2
## 1
##
##
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 9 22.8 4 140.8 95 3.92 3.15
## 10 19.2 6 167.6 123 3.92 3.44
## 1 20.37 5.8 208.61 122.8 3.54 3.13
## 21 2.91 1.48 90.37 51.45 0.44 0.41
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 9 22.9 1 0 4 2
## 10 18.3 1 0 4 4
## 1 18.58 0.6 0.3 3.6 2.5
## 21 2.14 0.52 0.48 0.52 1.35
The merge
sprinkle may be used to join any number of
conjoined cells. The following example is for illustration only, and
probably wouldn’t be put to use in any meaningful application. What we
will do is merge nine cells and display the value of the center cell.
Take notice of where the value 160
appears in the table
below compared to the table above. In the case of markdown output, the
cells aren’t actually merged, but the values of the non-displayed cells
are set to ""
.
x %>%
sprinkle(merge = TRUE, halign = "center", part = "interfoot") %>%
sprinkle(rows = 1:3, cols = 2:4,
merge = TRUE, merge_rowval = 2, merge_colval = 3,
halign = "center")
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 1 21 3.9 2.62
## 21 21 160 3.9 2.88
## 3 22.8 3.85 2.32
## 4 21.4 6 258 110 3.08 3.21
## 11 To Be Continued
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 1 16.46 0 1 4 4
## 21 17.02 0 1 4 4
## 3 18.61 1 1 4 1
## 4 19.44 1 0 3 1
## 11
##
##
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 5 18.7 8 360 175 3.15 3.44
## 6 18.1 6 225 105 2.76 3.46
## 7 14.3 8 360 245 3.21 3.57
## 8 24.4 4 146.7 62 3.69 3.19
## 1 To Be Continued
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 5 17.02 0 0 3 2
## 6 20.22 1 0 3 1
## 7 15.84 0 0 3 4
## 8 20 1 0 4 2
## 1
##
##
## mpg cyl disp hp drat wt
## 2 Gas Mileage Cylinders Displacement Horse Power Rear Axle Ratio Weight
## 9 22.8 4 140.8 95 3.92 3.15
## 10 19.2 6 167.6 123 3.92 3.44
## 1 20.37 5.8 208.61 122.8 3.54 3.13
## 21 2.91 1.48 90.37 51.45 0.44 0.41
## qsec vs am gear carb
## 2 1/4 mile time V/S Transmission Forward Gears Carburetors
## 9 22.9 1 0 4 2
## 10 18.3 1 0 4 4
## 1 18.58 0.6 0.3 3.6 2.5
## 21 2.14 0.52 0.48 0.52 1.35
pixiedust
offers a few options to help simplify the
preparation of model output for tabular display. If you choose to use
the label
functions from the labelVector
package, these labels can be accessed for the table. Additionally, the
levels of factor variables may be printed in a more human-readable
format. (note that the label
functions from the
Hmisc
package may also be used)
fit <- lm(mpg ~ qsec + factor(am) + wt + factor(gear),
data = mtcars)
dust(fit, descriptors = c("label", "level")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("console")
## label level estimate std.error statistic p.value
## 1 (Intercept) <NA> 9.37 8.37 1.12 0.27
## 2 <NA> Manual 3.15 1.94 1.62 0.12
## 3 <NA> 4 -0.27 1.66 -0.16 0.87
## 4 <NA> 5 -0.27 2.06 -0.13 0.9
## 5 <NA> 1.24 0.38 3.25 0.003
## 6 <NA> -3.93 0.74 -5.29 < 0.001
Or, if we wish to see the reference value of the factors, we can
request the "level_detail"
descriptor.
dust(fit, descriptors = c("label", "level_detail")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("console")
## label level_detail estimate std.error statistic p.value
## 1 (Intercept) <NA> 9.37 8.37 1.12 0.27
## 2 <NA> Manual vs. Automatic 3.15 1.94 1.62 0.12
## 3 <NA> 4 vs. 3 -0.27 1.66 -0.16 0.87
## 4 <NA> 5 vs. 3 -0.27 2.06 -0.13 0.9
## 5 <NA> 1.24 0.38 3.25 0.003
## 6 <NA> -3.93 0.74 -5.29 < 0.001
One word of caution: The labels are pulled from the data obtained by
model.frame
, and if you apply a function to a term in your
formula, you might lose the label. Consider the example below, where we
include the vs
variable, but convert it from a numeric to a
factor. If retaining the label is important to you, making your
conversions prior to assigning the labels will be a good habit. Don’t
fret too much, however, as you can always replace a cell’s content with
the replace
sprinkle.
fit <- lm(mpg ~ qsec + am + wt + gear + factor(vs),
data = mtcars)
dust(fit, descriptors = c("label", "level_detail")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("console")
## label level_detail estimate std.error statistic p.value
## 1 (Intercept) <NA> 9.55 9.45 1.01 0.32
## 2 <NA> Manual vs. Automatic 3.17 2.01 1.58 0.13
## 3 <NA> 1 vs. 0 0.09 1.92 0.05 0.96
## 4 <NA> 4 vs. 3 -0.29 1.77 -0.17 0.87
## 5 <NA> 5 vs. 3 -0.29 2.17 -0.14 0.89
## 6 <NA> 1.23 0.51 2.39 0.025
## 7 <NA> -3.91 0.85 -4.62 < 0.001
In addition to providing better labeling of terms and factor levels,
pixiedust
allows you to add model fit statistics in a
similar manner that the stargazer
package does. Under the
default settings, we can build these statistics in the following
manner:
fit <- lm(mpg ~ qsec + am + wt + gear,
data = mtcars)
dust(fit, descriptors = c("label", "level_detail"),
glance_foot = TRUE) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle(rows = 1, border = "top") %>%
sprinkle(cols = c(2, 6), round = 2, na_string = "",
part = "foot") %>%
sprinkle(rows = 1, border = "top", part = "foot") %>%
sprinkle_print_method("console")
## label level_detail estimate std.error statistic p.value
## 1 (Intercept) <NA> 9.37 8.37 1.12 0.27
## 2 <NA> Manual vs. Automatic 3.15 1.94 1.62 0.12
## 3 <NA> 4 vs. 3 -0.27 1.66 -0.16 0.87
## 4 <NA> 5 vs. 3 -0.27 2.06 -0.13 0.9
## 5 <NA> 1.24 0.38 3.25 0.003
## 6 <NA> -3.93 0.74 -5.29 < 0.001
## 7 r.squared 0.85 logLik -72.04
## 8 adj.r.squared 0.82 AIC 158.08
## 9 sigma 2.55 BIC 168.34
## 10 statistic 29.43 deviance 169.1
## 11 p.value 0 df.residual 26
## 12 df 5 nobs 32
At times, we may find the volume of these fit statistics overwhelming
and may want to display only a subset of them. This can be done with the
use of the glance_stats
argument in dust
. In
addition to selecting the statistics to display, the order in which they
are displayed may also be controlled.
fit <- lm(mpg ~ qsec + am + wt + gear,
data = mtcars)
dust(fit, descriptors = c("label", "level_detail"),
glance_foot = TRUE,
glance_stats = c("AIC", "adj.r.squared", "BIC", "df"),
byrow = TRUE) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle(rows = 1, border = "top") %>%
sprinkle(cols = c(2, 6), round = 2, na_string = "",
part = "foot") %>%
sprinkle(rows = 1, border = "top", part = "foot") %>%
sprinkle_print_method("console")
## label level_detail estimate std.error statistic p.value
## 1 (Intercept) <NA> 9.37 8.37 1.12 0.27
## 2 <NA> Manual vs. Automatic 3.15 1.94 1.62 0.12
## 3 <NA> 4 vs. 3 -0.27 1.66 -0.16 0.87
## 4 <NA> 5 vs. 3 -0.27 2.06 -0.13 0.9
## 5 <NA> 1.24 0.38 3.25 0.003
## 6 <NA> -3.93 0.74 -5.29 < 0.001
## 7 AIC 158.08 adj.r.squared 0.82
## 8 BIC 168.34 df 5
Markdown output will support some of the features of
pixiedust
a little better, but they are still pretty
limited. Background colors are not supported. Headers will appear in
bold text. To distinguish the footers, we’ll print them in italics.
The longtable feature is named for the LaTeX package
longtable
, which will automatically break a table into
multiple divisions, each of which is displayed on a separate page. We
can use the long table sprinkle to break a table into divisions of any
size we like. In this example, we’ll use divisions of four rows each. We
will use the same header and footer as the previous example, and we’ll
also make use of the interfoot, which is the footer placed at
the bottom of each intermediate table, while the footer is placed only
at the bottom of the last table. We’ll make use of the multi-cell
feature for the interfoot here, although we won’t really discuss it
until the next section.
The code for this table is nearly identical to the previous example.
We just add a redust
call for the interfoot and add a
longtable
argument to sprinkle_table
.
custom_interfoot <- data.frame("To Be Continued",
"", "", "", "", "", "",
"", "", "", "")
(x <- dust(mtcars2) %>%
redust(custom_head, part = "head") %>%
redust(custom_foot, part = "foot") %>%
redust(custom_interfoot, part = "interfoot") %>%
sprinkle_table(round = 2, longtable = 4) %>%
sprinkle(bg = "gray", part = "head") %>%
sprinkle(bg = "lightgray", part = "foot") %>%
sprinkle(bg = "lightgray", part = "interfoot") %>%
sprinkle_print_method("markdown"))
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
21 | 6 | 160 | 110 | 3.9 | 2.88 | 17.02 | 0 | 1 | 4 | 4 |
22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 |
21.4 | 6 | 258 | 110 | 3.08 | 3.21 | 19.44 | 1 | 0 | 3 | 1 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
5 | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
6 | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
7 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
8 | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
11 | To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
9 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
10 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
11 | 20.37 | 5.8 | 208.61 | 122.8 | 3.54 | 3.13 | 18.58 | 0.6 | 0.3 | 3.6 | 2.5 |
2 | 2.91 | 1.48 | 90.37 | 51.45 | 0.44 | 0.41 | 2.14 | 0.52 | 0.48 | 0.52 | 1.35 |
The table above doesn’t look quite right, however, because the “To Be
Continued” appears in one cell when it might look better spread out on a
single line. With the HTML output, we could use the merge
sprinkle to merge all of the cells in the interfoot
in
order to make it appear more fluid. However, this feature isn’t
supported by markdown, so the best we can get is the text in one
cell.
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
21 | 6 | 160 | 110 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 |
21 | 6 | 160 | 110 | 3.9 | 2.88 | 17.02 | 0 | 1 | 4 | 4 |
22.8 | 4 | 108 | 93 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 |
21.4 | 6 | 258 | 110 | 3.08 | 3.21 | 19.44 | 1 | 0 | 3 | 1 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
5 | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
6 | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
7 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
8 | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
11 | To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
9 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
10 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
11 | 20.37 | 5.8 | 208.61 | 122.8 | 3.54 | 3.13 | 18.58 | 0.6 | 0.3 | 3.6 | 2.5 |
2 | 2.91 | 1.48 | 90.37 | 51.45 | 0.44 | 0.41 | 2.14 | 0.52 | 0.48 | 0.52 | 1.35 |
The merge
sprinkle may be used to join any number of
conjoined cells. The following example is for illustration only, and
probably wouldn’t be put to use in any meaningful application. What we
will do is merge nine cells and display the value of the center cell.
Take notice of where the value 160
appears in the table
below compared to the table above. In the case of markdown output, the
cells aren’t actually merged, but the values of the non-displayed cells
are set to ""
.
x %>%
sprinkle(merge = TRUE, halign = "center", part = "interfoot") %>%
sprinkle(rows = 1:3, cols = 2:4,
merge = TRUE, merge_rowval = 2, merge_colval = 3,
halign = "center")
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb |
---|---|---|---|---|---|---|---|---|---|---|
Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
21 | 3.9 | 2.62 | 16.46 | 0 | 1 | 4 | 4 | |||
21 | 160 | 3.9 | 2.88 | 17.02 | 0 | 1 | 4 | 4 | ||
22.8 | 3.85 | 2.32 | 18.61 | 1 | 1 | 4 | 1 | |||
21.4 | 6 | 258 | 110 | 3.08 | 3.21 | 19.44 | 1 | 0 | 3 | 1 |
To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
5 | 18.7 | 8 | 360 | 175 | 3.15 | 3.44 | 17.02 | 0 | 0 | 3 | 2 |
6 | 18.1 | 6 | 225 | 105 | 2.76 | 3.46 | 20.22 | 1 | 0 | 3 | 1 |
7 | 14.3 | 8 | 360 | 245 | 3.21 | 3.57 | 15.84 | 0 | 0 | 3 | 4 |
8 | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.19 | 20 | 1 | 0 | 4 | 2 |
11 | To Be Continued |
mpg | cyl | disp | hp | drat | wt | qsec | vs | am | gear | carb | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Gas Mileage | Cylinders | Displacement | Horse Power | Rear Axle Ratio | Weight | 1/4 mile time | V/S | Transmission | Forward Gears | Carburetors |
9 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.15 | 22.9 | 1 | 0 | 4 | 2 |
10 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.44 | 18.3 | 1 | 0 | 4 | 4 |
11 | 20.37 | 5.8 | 208.61 | 122.8 | 3.54 | 3.13 | 18.58 | 0.6 | 0.3 | 3.6 | 2.5 |
2 | 2.91 | 1.48 | 90.37 | 51.45 | 0.44 | 0.41 | 2.14 | 0.52 | 0.48 | 0.52 | 1.35 |
pixiedust
offers a few options to help simplify the
preparation of model output for tabular display. If you choose to use
the label
functions from the labelVector
package, these labels can be accessed for the table. Additionally, the
levels of factor variables may be printed in a more human-readable
format. (note that the label
functions from the
Hmisc
package may also be used)
fit <- lm(mpg ~ qsec + factor(am) + wt + factor(gear),
data = mtcars)
dust(fit, descriptors = c("label", "level")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("markdown")
label | level | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 |
Or, if we wish to see the reference value of the factors, we can
request the "level_detail"
descriptor.
dust(fit, descriptors = c("label", "level_detail")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("markdown")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual vs. Automatic | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 vs. 3 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 vs. 3 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 |
One word of caution: The labels are pulled from the data obtained by
model.frame
, and if you apply a function to a term in your
formula, you might lose the label. Consider the example below, where we
include the vs
variable, but convert it from a numeric to a
factor. If retaining the label is important to you, making your
conversions prior to assigning the labels will be a good habit. Don’t
fret too much, however, as you can always replace a cell’s content with
the replace
sprinkle.
fit <- lm(mpg ~ qsec + am + wt + gear + factor(vs),
data = mtcars)
dust(fit, descriptors = c("label", "level_detail")) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle_print_method("markdown")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.55 | 9.45 | 1.01 | 0.32 |
NA | Manual vs. Automatic | 3.17 | 2.01 | 1.58 | 0.13 |
NA | 1 vs. 0 | 0.09 | 1.92 | 0.05 | 0.96 |
NA | 4 vs. 3 | -0.29 | 1.77 | -0.17 | 0.87 |
NA | 5 vs. 3 | -0.29 | 2.17 | -0.14 | 0.89 |
NA | 1.23 | 0.51 | 2.39 | 0.025 | |
NA | -3.91 | 0.85 | -4.62 | < 0.001 |
In addition to providing better labeling of terms and factor levels,
pixiedust
allows you to add model fit statistics in a
similar manner that the stargazer
package does. Under the
default settings, we can build these statistics in the following
manner:
fit <- lm(mpg ~ qsec + am + wt + gear,
data = mtcars)
dust(fit, descriptors = c("label", "level_detail"),
glance_foot = TRUE) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle(rows = 1, border = "top") %>%
sprinkle(cols = c(2, 6), round = 2, na_string = "",
part = "foot") %>%
sprinkle(rows = 1, border = "top", part = "foot") %>%
sprinkle_print_method("markdown")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual vs. Automatic | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 vs. 3 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 vs. 3 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 | |
r.squared | 0.85 | logLik | -72.04 | ||
adj.r.squared | 0.82 | AIC | 158.08 | ||
sigma | 2.55 | BIC | 168.34 | ||
statistic | 29.43 | deviance | 169.1 | ||
p.value | 0 | df.residual | 26 | ||
df | 5 | nobs | 32 |
At times, we may find the volume of these fit statistics overwhelming
and may want to display only a subset of them. This can be done with the
use of the glance_stats
argument in dust
. In
addition to selecting the statistics to display, the order in which they
are displayed may also be controlled.
fit <- lm(mpg ~ qsec + am + wt + gear,
data = mtcars)
dust(fit, descriptors = c("label", "level_detail"),
glance_foot = TRUE,
glance_stats = c("AIC", "adj.r.squared", "BIC", "df"),
byrow = TRUE) %>%
sprinkle(cols = 3:5, round = 2) %>%
sprinkle(cols = 6, fn = quote(pvalString(value))) %>%
sprinkle(rows = 1, border = "top") %>%
sprinkle(cols = c(2, 6), round = 2, na_string = "",
part = "foot") %>%
sprinkle(rows = 1, border = "top", part = "foot") %>%
sprinkle_print_method("markdown")
label | level_detail | estimate | std.error | statistic | p.value |
---|---|---|---|---|---|
(Intercept) | NA | 9.37 | 8.37 | 1.12 | 0.27 |
NA | Manual vs. Automatic | 3.15 | 1.94 | 1.62 | 0.12 |
NA | 4 vs. 3 | -0.27 | 1.66 | -0.16 | 0.87 |
NA | 5 vs. 3 | -0.27 | 2.06 | -0.13 | 0.9 |
NA | 1.24 | 0.38 | 3.25 | 0.003 | |
NA | -3.93 | 0.74 | -5.29 | < 0.001 | |
AIC | 158.08 | adj.r.squared | 0.82 | ||
BIC | 168.34 | df | 5 |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.