The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Portfolio Calculation


library(tidyverse)
library(dplyr)
library(lubridate)
library(tidyverse)
library(shiny)

# for the tables
library(reactable)
library(reactablefmtr)
library(sparkline)
library(DT)

# for the charts
library(highcharter)

# the library planr
library(planr)

Some examples to apply the planr functions for portfolios

Part 1 : Projected Inventories & Coverages

1.1) Overview Demo dataset

Let’s look at the demo dataset blueprint_light.

The raw data look like this:


df1 <- blueprint_light

glimpse(df1)
#> Rows: 520
#> Columns: 5
#> $ DFU     <chr> "Item 000001", "Item 000001", "Item 000001", "Item 000001", "I…
#> $ Period  <date> 2022-07-03, 2022-07-10, 2022-07-17, 2022-07-24, 2022-07-31, 2…
#> $ Demand  <dbl> 364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 349, 349, 20…
#> $ Opening <dbl> 6570, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ Supply  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5000, 0, 0, 0, 0, 0,…

Let’s have a summary view, using the reactable package:




#-----------------
# Get Summary of variables
#-----------------

# set a working df
df1 <- blueprint_light

# aggregate
df1 <- df1 %>% select(DFU, 
                         Demand,
                         Opening,
                         Supply) %>%
      group_by(DFU) %>%
      summarise(Demand = sum(Demand),
                Opening = sum(Opening),
                Supply = sum(Supply)
      )
    
# let's calculate the share of Demand
df1$Demand.pc <- df1$Demand / sum(df1$Demand)
    
    
# keep Results
Value_DB <- df1
    

 
    
#-----------------
# Get Sparklines Demand
#-----------------
    
# set a working df
df1 <- blueprint_light
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Demand)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Demand.Quantity = list(Quantity))
    
# keep Results
Demand_Sparklines_DB <- df1

    
#-----------------
# Get Sparklines Supply
#-----------------
    
# set a working df
df1 <- blueprint_light
    
# replace missing values by zero
df1$Supply[is.na(df1$Supply)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Supply)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Supply.Quantity = list(Quantity))
    
# keep Results
Supply_Sparklines_DB <- df1




#-----------------
# Merge dataframes
#-----------------

# merge
df1 <- left_join(Value_DB, Demand_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Supply_Sparklines_DB)
#> Joining with `by = join_by(DFU)`


# reorder columns
df1 <- df1 %>% select(DFU, Demand, Demand.pc, Demand.Quantity, Opening,
                      Supply, Supply.Quantity)


# get results
Summary_DB <- df1

glimpse(Summary_DB)
#> Rows: 10
#> Columns: 7
#> $ DFU             <chr> "Item 000001", "Item 000002", "Item 000003", "Item 000…
#> $ Demand          <dbl> 20294, 60747, 5975, 68509, 119335, 101810, 13823, 2075…
#> $ Demand.pc       <dbl> 0.032769097, 0.098089304, 0.009647943, 0.110622748, 0.…
#> $ Demand.Quantity <list> <364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 34…
#> $ Opening         <dbl> 6570, 5509, 2494, 7172, 17500, 9954, 2092, 17500, 1222…
#> $ Supply          <dbl> 6187, 17927, 3000, 20000, 30000, 21660, 6347, 73000, 7…
#> $ Supply.Quantity <list> <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5000, 0, 0…

and now let’s create the reactable :


reactable(df1,compact = TRUE,
              
              defaultSortOrder = "desc",
              defaultSorted = c("Demand"),
              defaultPageSize = 20,
              
              columns = list(
                
                `DFU` = colDef(name = "DFU"),

                
                `Demand`= colDef(
                  name = "Total Demand (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0),
                  style = list(background = "yellow",fontWeight = "bold")
                ),
                
                
                `Demand.pc`= colDef(
                  name = "Share of Demand (%)",
                  format = colFormat(percent = TRUE, digits = 1)
                ), # close %
                
                
                `Supply`= colDef(
                  name = "Total Supply (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                
                `Opening`= colDef(
                  name = "Opening Inventories (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                Demand.Quantity = colDef(
                  name = "Projected Demand",
                  cell = function(value, index) {
                    sparkline(df1$Demand.Quantity[[index]])
                  }),
                

                
                
                Supply.Quantity = colDef(
                  name = "Projected Supply",
                  cell = function(values) {
                    sparkline(values, type = "bar"
                              #chartRangeMin = 0, chartRangeMax = max(chickwts$weight)
                    )
                  })
                


 
                
                
              ), # close columns list
              
              defaultColDef = colDef(footerStyle = list(fontWeight = "bold")),
              
              
              columnGroups = list(
                
                colGroup(name = "Demand",
                         columns = c("Demand",
                                     "Demand.pc",
                                     "Demand.Quantity")),
                
                colGroup(name = "Supply",
                         columns = c("Supply", "Supply.Quantity"))
                
                
              )
          
) # close reactable

1.2) Calculate Projected Inventories



# set a working df
df1 <- blueprint_light


df1 <- as.data.frame(df1)

glimpse(df1)
#> Rows: 520
#> Columns: 5
#> $ DFU     <chr> "Item 000001", "Item 000001", "Item 000001", "Item 000001", "I…
#> $ Period  <date> 2022-07-03, 2022-07-10, 2022-07-17, 2022-07-24, 2022-07-31, 2…
#> $ Demand  <dbl> 364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 349, 349, 20…
#> $ Opening <dbl> 6570, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ Supply  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5000, 0, 0, 0, 0, 0,…

# calculate
calculated_projection <- light_proj_inv(dataset = df1, 
                                        DFU = DFU, 
                                        Period = Period, 
                                        Demand =  Demand, 
                                        Opening = Opening, 
                                        Supply = Supply)
#> Joining with `by = join_by(DFU, Period)`

# see results
head(calculated_projection)
#>           DFU     Period Demand Opening Calculated.Coverage.in.Periods
#> 1 Item 000001 2022-07-03    364    6570                           16.8
#> 2 Item 000001 2022-07-10    364       0                           15.8
#> 3 Item 000001 2022-07-17    364       0                           14.8
#> 4 Item 000001 2022-07-24    260       0                           13.8
#> 5 Item 000001 2022-07-31    736       0                           12.8
#> 6 Item 000001 2022-08-07    859       0                           11.8
#>   Projected.Inventories.Qty Supply
#> 1                      6206      0
#> 2                      5842      0
#> 3                      5478      0
#> 4                      5218      0
#> 5                      4482      0
#> 6                      3623      0

1.3) Analysis

1.3.1) For one Item

Let’s look at the Item 000001 :


calculated_projection <-as.data.frame(calculated_projection)

# filter data
Selected_DB <- filter(calculated_projection, calculated_projection$DFU == "Item 000001")


glimpse(Selected_DB)
#> Rows: 52
#> Columns: 7
#> $ DFU                            <chr> "Item 000001", "Item 000001", "Item 000…
#> $ Period                         <date> 2022-07-03, 2022-07-10, 2022-07-17, 20…
#> $ Demand                         <dbl> 364, 364, 364, 260, 736, 859, 859, 859,…
#> $ Opening                        <dbl> 6570, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ Calculated.Coverage.in.Periods <dbl> 16.8, 15.8, 14.8, 13.8, 12.8, 11.8, 10.…
#> $ Projected.Inventories.Qty      <dbl> 6206, 5842, 5478, 5218, 4482, 3623, 276…
#> $ Supply                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …

Let’s create a table using reactable :


# keep only the needed columns
df1 <- Selected_DB %>% select(Period,
                      Demand,
                      Calculated.Coverage.in.Periods,
                      Projected.Inventories.Qty,
                      Supply)


# create a f_colorpal field
df1 <- df1 %>% mutate(f_colorpal = case_when( Calculated.Coverage.in.Periods > 6 ~ "#FFA500",
                                              Calculated.Coverage.in.Periods > 2 ~ "#32CD32",
                                              Calculated.Coverage.in.Periods > 0 ~ "#FFFF99",
                                              TRUE ~ "#FF0000" ))



# create reactable
reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE,

              striped = TRUE, highlight = TRUE, compact = TRUE,
              defaultPageSize = 20,

              columns = list(

                Demand = colDef(
                  name = "Demand (units)",

                  cell = data_bars(df1,
                                   fill_color = "#3fc1c9",
                                   text_position = "outside-end"
                  )

                ),

              Calculated.Coverage.in.Periods = colDef(
                name = "Coverage (Periods)",
                maxWidth = 90,
                cell= color_tiles(df1, color_ref = "f_colorpal")
              ),

              f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages

                `Projected.Inventories.Qty`= colDef(
                  name = "Projected Inventories (units)",
                  format = colFormat(separators = TRUE, digits=0),

                  style = function(value) {
                    if (value > 0) {
                      color <- "#008000"
                    } else if (value < 0) {
                      color <- "#e00000"
                    } else {
                      color <- "#777"
                    }
                    list(color = color
                         #fontWeight = "bold"
                    )
                  }
                ),

              Supply = colDef(
                name = "Supply (units)",
                cell = data_bars(df1,
                                 fill_color = "#3CB371",
                                 text_position = "outside-end"
                                 )
                )

              ), # close columns lits

              columnGroups = list(
                colGroup(name = "Projected Inventories", columns = c("Calculated.Coverage.in.Periods",
                                                                     "Projected.Inventories.Qty"))

              )

    ) # close reactable

1.3.2) For multiple Items

We can create a simple table that we could call a “Supply Risks Alarm”, giving a quick overview of: - projected inventories - projected coverages


#------------------------------
# Get data
df1 <- calculated_projection
df1 <- as.data.frame(df1)


#------------------------------
# Filter

# subset Period based on those Starting and Ending Periods
df1 <- subset(df1,df1$Period >= "2022-07-03" & df1$Period <= "2022-09-25")


#--------
# Keep Initial data
#--------
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
Initial_DB <- df1
   


#------------------------------
# Transform
    
    
    
#--------
# Create a Summary database
#--------
    
# set a working df
df1 <- Initial_DB
    
# aggregate
df1 <- df1 %>% select(
      DFU,
      Demand) %>%
      group_by(DFU
               ) %>%
      summarise(Demand.Qty = sum(Demand)
      )
    

# Get Results
Value_DB <- df1



#--------
# Create the SRA
#--------

# set a working df
df1 <- Initial_DB

#------------------------------
# keep only the needed columns
df1 <- df1[,c("DFU","Period","Calculated.Coverage.in.Periods")]

# format as numeric
df1$Calculated.Coverage.in.Periods <- as.numeric(df1$Calculated.Coverage.in.Periods)

# formatting 1 digit after comma
df1$Calculated.Coverage.in.Periods = round(df1$Calculated.Coverage.in.Periods, 1)

# spread data
df1 <- df1 %>% spread(Period, Calculated.Coverage.in.Periods)

# replace missing values by zero
df1[is.na(df1)] <- 0

# Get Results
SRA_DB <- df1
 



#--------
# Merge both database
#--------

# merge both databases
df1 <- left_join(Value_DB, SRA_DB)
#> Joining with `by = join_by(DFU)`

# Sort by Demand.Qty descending
df1 <- df1[order(-df1$Demand.Qty),]


# rename column
df1 <- df1 %>% rename(
      "Total Demand (units)" = Demand.Qty
    )


# Get Results
Interim_DB <- df1

Let’s visualize through a DT table :


#------------------------------
# create DT
  
df1 <- Interim_DB

datatable(df1,
              #filter = list(position = 'top', clear = FALSE),

              options = list(
                searching = FALSE,
                pageLength = 20,
                columnDefs = list(list(width = '200px', targets = c(1,2)))
              ),rownames= FALSE) %>%

      formatRound(2:2, 1) %>%

      formatStyle(columns = c(1:100), fontSize = '85%') %>%

      formatStyle(
        3:20,
        backgroundColor = styleInterval(c(-0.1,0.0,1.0), c('#FF6347', 'orange', 'yellow','lightblue'))
      ) %>%

    formatStyle(
      2:2,
      backgroundColor = 'mediumseagreen'
    ) 

1.3.3) Add Delay Analysis Check

We can imagine creating a tag to inform us when the projected inventories are negative, which means we have a risk of delay. It’s somehowe like “screening” all the projected inventories (in a pretty simple way!).


#--------
# Create a Delay.Analysis check
#--------

# set a working df
df1 <- Initial_DB

# aggregate
df1 <- df1 %>% select(DFU, Period,Projected.Inventories.Qty) %>%
      group_by(DFU) %>%
      summarise(min.Projected.Inventories.Qty = min(Projected.Inventories.Qty),
                max.Projected.Inventories.Qty = max(Projected.Inventories.Qty)
      )



#-----------------
# Identify where we are late to supply
#-----------------

# Add a character info to analyze whether there is an identified delay or not
df1$Delay.Analysis <- if_else(df1$min.Projected.Inventories.Qty <= 0, "Delay", "OK")

# Get Results
Check_DB <- df1

head(Check_DB)
#> # A tibble: 6 × 4
#>   DFU         min.Projected.Inventories.…¹ max.Projected.Invent…² Delay.Analysis
#>   <chr>                              <dbl>                  <dbl> <chr>         
#> 1 Item 000001                          385                   6206 OK            
#> 2 Item 000002                         1252                  10954 OK            
#> 3 Item 000003                         1180                   2229 OK            
#> 4 Item 000004                           98                   9307 OK            
#> 5 Item 000005                         3100                  28600 OK            
#> 6 Item 000006                         6531                  15730 OK            
#> # ℹ abbreviated names: ¹​min.Projected.Inventories.Qty,
#> #   ²​max.Projected.Inventories.Qty

Now let’s add this Check_DB to the previous dataframes :



#--------
# Merge
#--------

# merge
df1 <- left_join(Check_DB, Interim_DB)
#> Joining with `by = join_by(DFU)`
df1 <- as.data.frame(df1)

# Note : we could use a filter to keep only those rows, in a shiny app for example
# filter on Delay.Analysis
# df1 <- filter(df1,df1$Delay.Analysis %in% input$Selected.Delay.Analysis)


# remove not needed columns
df1 <- df1[ , -which(names(df1) %in% c("min.Projected.Inventories.Qty",
                                           "max.Projected.Inventories.Qty"
                                           #"Delay.Analysis"
                                       ))]

    
    
#------------------------------
# create DT

datatable(df1,
              #filter = list(position = 'top', clear = FALSE),

              options = list(
                searching = FALSE,
                pageLength = 20,
                columnDefs = list(list(width = '200px', targets = c(1,2)))
              ),rownames= FALSE) %>%

      formatRound(3:3, 1) %>%

      formatStyle(columns = c(1:100), fontSize = '85%') %>%

      formatStyle(
        4:20,
        backgroundColor = styleInterval(c(-0.1,0.0,1.0), c('#FF6347', 'orange', 'yellow','lightblue'))
      ) %>%

    formatStyle(
      3:3,
      backgroundColor = 'mediumseagreen'
    ) 

1.4) Cockpit

We can also use another way, more compact, to get : - an overview of the projected inventories - an analysis of the projected values

1.4.1) Create Dataframe




#------------------------------
# Get data
df1 <- calculated_projection
df1 <- as.data.frame(df1)


#------------------------------
# Filter

# subset Period based on those Starting and Ending Periods
df1 <- subset(df1,df1$Period >= "2022-07-03" & df1$Period <= "2022-09-25")


# keep this initial dataset
Initial_DB <- df1





#-----------------
# Get Summary of variables
#-----------------

# set a working df
df1 <- Initial_DB

# aggregate
df1 <- df1 %>% select(DFU, 
                         Demand,
                         Opening,
                         Supply) %>%
      group_by(DFU) %>%
      summarise(Demand = sum(Demand),
                Opening = sum(Opening),
                Supply = sum(Supply)
      )
    
# let's calculate the share of Demand
df1$Demand.pc <- df1$Demand / sum(df1$Demand)
    
    
# keep Results
Value_DB <- df1
    

 
    
#-----------------
# Get Sparklines Demand
#-----------------
    
# set a working df
df1 <- Initial_DB
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Demand)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Demand.Quantity = list(Quantity))
    
# keep Results
Demand_Sparklines_DB <- df1

    
#-----------------
# Get Sparklines Supply
#-----------------
    
# set a working df
df1 <- Initial_DB
    
# replace missing values by zero
df1$Supply[is.na(df1$Supply)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Supply)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Supply.Quantity = list(Quantity))
    
# keep Results
Supply_Sparklines_DB <- df1






#-----------------
# Get Sparklines Projected Inventories
#-----------------
    
# set a working df
df1 <- Initial_DB
    
# replace missing values by zero
df1$Projected.Inventories.Qty[is.na(df1$Projected.Inventories.Qty)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Projected.Inventories.Qty)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(PI.Quantity = list(Quantity))
    
# keep Results
PI_Sparklines_DB <- df1





#--------
# Create a Delay.Analysis check
#--------

# set a working df
df1 <- Initial_DB

# aggregate
df1 <- df1 %>% select(DFU, Period,Projected.Inventories.Qty) %>%
      group_by(DFU) %>%
      summarise(min.Projected.Inventories.Qty = min(Projected.Inventories.Qty),
                max.Projected.Inventories.Qty = max(Projected.Inventories.Qty)
      )



#-----------------
# Identify where we are late to supply
#-----------------

# Add a character info to analyze whether there is an identified delay or not
df1$Delay.Analysis <- if_else(df1$min.Projected.Inventories.Qty <= 0, "Delay", "OK")

# Get Results
Check_DB <- df1














#-----------------
# Merge dataframes
#-----------------

# merge
df1 <- left_join(Value_DB, Demand_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Supply_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, PI_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Check_DB)
#> Joining with `by = join_by(DFU)`


# reorder columns
df1 <- df1 %>% select(DFU, Demand, Demand.pc, Demand.Quantity,
                      Supply, Supply.Quantity,
                      Opening,
                      PI.Quantity,
                      Delay.Analysis)


# get results
Summary_DB <- df1

glimpse(Summary_DB)
#> Rows: 10
#> Columns: 9
#> $ DFU             <chr> "Item 000001", "Item 000002", "Item 000003", "Item 000…
#> $ Demand          <dbl> 6185, 18458, 1314, 12336, 29700, 17846, 3870, 49416, 9…
#> $ Demand.pc       <dbl> 0.042589379, 0.127100204, 0.009048091, 0.084944637, 0.…
#> $ Demand.Quantity <list> <364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 34…
#> $ Supply          <dbl> 0, 15120, 0, 10000, 30000, 17556, 2593, 27000, 0, 2520
#> $ Supply.Quantity <list> <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>, <0, 0, 0, 103…
#> $ Opening         <dbl> 6570, 5509, 2494, 7172, 17500, 9954, 2092, 17500, 122…
#> $ PI.Quantity     <list> <6206, 5842, 5478, 5218, 4482, 3623, 2764, 1905, 1632,…
#> $ Delay.Analysis  <chr> "OK", "OK", "OK", "OK", "OK", "OK", "OK", "Delay", "O…

1.4.2) Display Table

Let’s create a function to display a badge :


#--------------------------------------------------------------------------------------
#    A Function to define a Badge Status in the reactable
#--------------------------------------------------------------------------------------

status_badge <- function(color = "#aaa", width = "9px", height = width) {
  span(style = list(
    display = "inline-block",
    marginRight = "8px",
    width = width,
    height = height,
    backgroundColor = color,
    borderRadius = "50%"
  ))
}

Now let’s create a reactable :



reactable(df1,compact = TRUE,
              
              defaultSortOrder = "desc",
              defaultSorted = c("Demand"),
              defaultPageSize = 20,
              
              columns = list(
                
                `DFU` = colDef(name = "DFU"),

                
                `Demand`= colDef(
                  name = "Total Demand (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0),
                  style = list(background = "yellow",fontWeight = "bold")
                ),
                
                
                `Demand.pc`= colDef(
                  name = "Share of Demand (%)",
                  format = colFormat(percent = TRUE, digits = 1)
                ), # close %
                
                
                `Supply`= colDef(
                  name = "Total Supply (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                
                `Opening`= colDef(
                  name = "Opening Inventories (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                Demand.Quantity = colDef(
                  name = "Projected Demand",
                  cell = function(value, index) {
                    sparkline(df1$Demand.Quantity[[index]])
                  }),
                

                
                
                Supply.Quantity = colDef(
                  name = "Projected Supply",
                  cell = function(values) {
                    sparkline(values, type = "bar"
                              #chartRangeMin = 0, chartRangeMax = max(chickwts$weight)
                    )
                  }),
                
                
                PI.Quantity = colDef(
                  name = "Projected Inventories",
                  cell = function(values) {
                    sparkline(values, type = "bar"
                              #chartRangeMin = 0, chartRangeMax = max(chickwts$weight)
                    )
                  }),
                
                
                
                Delay.Analysis = colDef(
                  name = "Delay Analysis",
                  
                  cell = function(value) {
                    color <- switch(
                      value,
                      OK = "hsl(120,61%,50%)",
                      Delay = "hsl(39,100%,50%)"
                    )
                    badge <- status_badge(color = color)
                    tagList(badge, value)
                  })
                


 
                
                
              ), # close columns list
              
              defaultColDef = colDef(footerStyle = list(fontWeight = "bold")),
              
              
              columnGroups = list(
                
                colGroup(name = "Demand",
                         columns = c("Demand",
                                     "Demand.pc",
                                     "Demand.Quantity")),
                
                colGroup(name = "Supply",
                         columns = c("Supply", "Supply.Quantity")),
                
                
                colGroup(name = "Inventories",
                         columns = c("Opening", "PI.Quantity", "Delay.Analysis"))
                
                
              )
          
) # close reactable

This cockpit gives us a quick overview about the risks of delays (negative projected inventories). However, we don’t know: - about the possible overstocks - whether those delays, or overstocks, are significant versus some targets.

We can then introduce 2 new parameters : - Min.Cov : Minimum Coverage target, expressed in Period - Max.Cov : Maximum Coverage target, expressed in Periods

And calculate the projected inventories and coverages using the proj_inv() function. Then, we’ll be able to compare the projected coverages versus those 2 target levels.

Part 2 : Projected Inventories & Analysis

2.1) Overview Demo dataset

Let’s look at the demo dataset blueprint_light.

The raw data look like this:


df1 <- blueprint

glimpse(df1)
#> Rows: 520
#> Columns: 7
#> $ DFU     <chr> "Item 000001", "Item 000001", "Item 000001", "Item 000001", "I…
#> $ Period  <date> 2022-07-03, 2022-07-10, 2022-07-17, 2022-07-24, 2022-07-31, 2…
#> $ Demand  <dbl> 364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 349, 349, 20…
#> $ Opening <dbl> 6570, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ Supply  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5000, 0, 0, 0, 0, 0,…
#> $ Min.Cov <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,…
#> $ Max.Cov <dbl> 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12…

Let’s have a summary view, using the reactable package:




#-----------------
# Get Summary of variables
#-----------------

# set a working df
df1 <- blueprint

# aggregate
df1 <- df1 %>% select(DFU,
                      Demand,
                      Opening,
                      Supply,
                      Min.Cov,
                      Max.Cov) %>%
      group_by(DFU) %>%
      summarise(Demand = sum(Demand),
                Opening = sum(Opening),
                Supply = sum(Supply),
                Min.Cov = mean(Min.Cov),
                Max.Cov = mean(Max.Cov)
      )
    
# let's calculate the share of Demand
df1$Demand.pc <- df1$Demand / sum(df1$Demand)
    
    
# keep Results
Value_DB <- df1
    

 
    
#-----------------
# Get Sparklines Demand
#-----------------
    
# set a working df
df1 <- blueprint_light
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Demand)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Demand.Quantity = list(Quantity))
    
# keep Results
Demand_Sparklines_DB <- df1

    
#-----------------
# Get Sparklines Supply
#-----------------
    
# set a working df
df1 <- blueprint_light
    
# replace missing values by zero
df1$Supply[is.na(df1$Supply)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Supply)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Supply.Quantity = list(Quantity))
    
# keep Results
Supply_Sparklines_DB <- df1




#-----------------
# Merge dataframes
#-----------------

# merge
df1 <- left_join(Value_DB, Demand_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Supply_Sparklines_DB)
#> Joining with `by = join_by(DFU)`


# reorder columns
df1 <- df1 %>% select(DFU,
                      Min.Cov, Max.Cov, 
                      Demand, Demand.pc, Demand.Quantity, Opening,
                      Supply, Supply.Quantity)


# get results
Summary_DB <- df1

glimpse(Summary_DB)
#> Rows: 10
#> Columns: 9
#> $ DFU             <chr> "Item 000001", "Item 000002", "Item 000003", "Item 000…
#> $ Min.Cov         <dbl> 4, 8, 4, 2, 4, 6, 6, 4, 4, 4
#> $ Max.Cov         <dbl> 12, 16, 12, 6, 12, 16, 12, 12, 12, 12
#> $ Demand          <dbl> 20294, 60747, 5975, 68509, 119335, 101810, 13823, 2075…
#> $ Demand.pc       <dbl> 0.032769097, 0.098089304, 0.009647943, 0.110622748, 0.…
#> $ Demand.Quantity <list> <364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 349…
#> $ Opening         <dbl> 6570, 5509, 2494, 7172, 17500, 9954, 2092, 17500, 1222…
#> $ Supply          <dbl> 6187, 17927, 3000, 20000, 30000, 21660, 6347, 73000, …
#> $ Supply.Quantity <list> <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5000, 0, 0,…

Let’s create a function bar_style() to be used within the reactable:



#--------------------------------------------------------------------------------------
#    A Function for a bar chart in the background of the cell
#--------------------------------------------------------------------------------------

# Render a bar chart in the background of the cell
bar_style <- function(width = 1, fill = "#e6e6e6", height = "75%", align = c("left", "right"), color = NULL) {
  align <- match.arg(align)
  if (align == "left") {
    position <- paste0(width * 100, "%")
    image <- sprintf("linear-gradient(90deg, %1$s %2$s, transparent %2$s)", fill, position)
  } else {
    position <- paste0(100 - width * 100, "%")
    image <- sprintf("linear-gradient(90deg, transparent %1$s, %2$s %1$s)", position, fill)
  }
  list(
    backgroundImage = image,
    backgroundSize = paste("100%", height),
    backgroundRepeat = "no-repeat",
    backgroundPosition = "center",
    color = color
  )
}

and now let’s create the reactable :


reactable(df1,compact = TRUE,
              
              defaultSortOrder = "desc",
              defaultSorted = c("Demand"),
              defaultPageSize = 20,
              
              columns = list(
                
                `DFU` = colDef(name = "DFU"),

                
                `Demand`= colDef(
                  name = "Total Demand (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0),
                  style = list(background = "yellow",fontWeight = "bold")
                ),
                
                
                `Demand.pc`= colDef(
                  name = "Share of Demand (%)",
                  format = colFormat(percent = TRUE, digits = 1)
                ), # close %
                
                
                `Supply`= colDef(
                  name = "Total Supply (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                
                `Opening`= colDef(
                  name = "Opening Inventories (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                Demand.Quantity = colDef(
                  name = "Projected Demand",
                  cell = function(value, index) {
                    sparkline(df1$Demand.Quantity[[index]])
                  }),
                

                
                
                Supply.Quantity = colDef(
                  name = "Projected Supply",
                  cell = function(values) {
                    sparkline(values, type = "bar"
                              #chartRangeMin = 0, chartRangeMax = max(chickwts$weight)
                    )
                  }),
                
                
                
                `Min.Cov`= colDef(
                  name = "Min Coverage (Periods)",
                  style = function(value) {
                    bar_style(width = value / max(df1$Min.Cov), fill = "hsl(208, 70%, 90%)")
                  }
                ),
                
                
                `Max.Cov`= colDef(
                  name = "Max Coverage (Periods)",
                  style = function(value) {
                    bar_style(width = value / max(df1$Max.Cov), fill = "hsl(0,79%,72%)")
                  }
                )
                


 
                
                
              ), # close columns list
              
              defaultColDef = colDef(footerStyle = list(fontWeight = "bold")),
              
              
              columnGroups = list(
                
                colGroup(name = "Demand",
                         columns = c("Demand",
                                     "Demand.pc",
                                     "Demand.Quantity")),
                
                colGroup(name = "Supply",
                         columns = c("Supply", "Supply.Quantity"))
                
                
              )
          
) # close reactable

2.2) Calculate Projected Inventories

Let’s apply the proj_inv() function :



# set a working df
df1 <- blueprint
df1 <- as.data.frame(df1)


# calculate
calculated_projection_and_analysis <- proj_inv(data = df1, 
                DFU = DFU, 
                Period = Period, 
                Demand =  Demand, 
                Opening = Opening, 
                Supply = Supply,
                Min.Cov = Min.Cov, 
                Max.Cov = Max.Cov)
#> Joining with `by = join_by(DFU, Period)`
#> Joining with `by = join_by(DFU, Period)`


head(calculated_projection_and_analysis)
#>           DFU     Period Demand Opening Calculated.Coverage.in.Periods
#> 1 Item 000001 2022-07-03    364    6570                           16.8
#> 2 Item 000001 2022-07-10    364       0                           15.8
#> 3 Item 000001 2022-07-17    364       0                           14.8
#> 4 Item 000001 2022-07-24    260       0                           13.8
#> 5 Item 000001 2022-07-31    736       0                           12.8
#> 6 Item 000001 2022-08-07    859       0                           11.8
#>   Projected.Inventories.Qty Supply Min.Cov Max.Cov Safety.Stocks Maximum.Stocks
#> 1                      6206      0       4      12          1724           5821
#> 2                      5842      0       4      12          2219           5471
#> 3                      5478      0       4      12          2714           5132
#> 4                      5218      0       4      12          3313           4904
#> 5                      4482      0       4      12          2850           4185
#> 6                      3623      0       4      12          2340           3693
#>    PI.Index Ratio.PI.vs.min Ratio.PI.vs.Max
#> 1 OverStock            3.60            1.07
#> 2 OverStock            2.63            1.07
#> 3 OverStock            2.02            1.07
#> 4 OverStock            1.58            1.06
#> 5 OverStock            1.57            1.07
#> 6        OK            1.55            0.98

2.3) Analysis

2.3.1) For one Item

Let’s look at the Item 000001 :


calculated_projection_and_analysis <-as.data.frame(calculated_projection_and_analysis)

# filter data
Selected_DB <- filter(calculated_projection_and_analysis, calculated_projection_and_analysis$DFU == "Item 000001")


glimpse(Selected_DB)
#> Rows: 52
#> Columns: 14
#> $ DFU                            <chr> "Item 000001", "Item 000001", "Item 000…
#> $ Period                         <date> 2022-07-03, 2022-07-10, 2022-07-17, 20…
#> $ Demand                         <dbl> 364, 364, 364, 260, 736, 859, 859, 859,…
#> $ Opening                        <dbl> 6570, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ Calculated.Coverage.in.Periods <dbl> 16.8, 15.8, 14.8, 13.8, 12.8, 11.8, 10.…
#> $ Projected.Inventories.Qty      <dbl> 6206, 5842, 5478, 5218, 4482, 3623, 276…
#> $ Supply                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ Min.Cov                        <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
#> $ Max.Cov                        <dbl> 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,…
#> $ Safety.Stocks                  <dbl> 1724, 2219, 2714, 3313, 2850, 2340, 183…
#> $ Maximum.Stocks                 <dbl> 5821, 5471, 5132, 4904, 4185, 3693, 334…
#> $ PI.Index                       <chr> "OverStock", "OverStock", "OverStock", …
#> $ Ratio.PI.vs.min                <dbl> 3.60, 2.63, 2.02, 1.58, 1.57, 1.55, 1.5…
#> $ Ratio.PI.vs.Max                <dbl> 1.07, 1.07, 1.07, 1.06, 1.07, 0.98, 0.8…

First, let’s create a function status_PI.Index()


# create a function status.PI.Index
status_PI.Index <- function(color = "#aaa", width = "0.55rem", height = width) {
  span(style = list(
    display = "inline-block",
    marginRight = "0.5rem",
    width = width,
    height = height,
    backgroundColor = color,
    borderRadius = "50%"
  ))
}

Let’s create a table using reactable :



# set a working df
df1 <- Selected_DB


# remove not needed column
df1 <- df1[ , -which(names(df1) %in% c("DFU"))]
    
    
# create a f_colorpal field
df1 <- df1 %>% mutate(f_colorpal = case_when( Calculated.Coverage.in.Periods > 6 ~ "#FFA500", 
                                              Calculated.Coverage.in.Periods > 2 ~ "#32CD32",
                                              Calculated.Coverage.in.Periods > 0 ~ "#FFFF99",
                                              TRUE ~ "#FF0000" ))
    
    
    
#-------------------------
# Create Table
    
    
    
reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE, 
              
              striped = TRUE, highlight = TRUE, compact = TRUE, 
              defaultPageSize = 20,
              
              columns = list(

                
                Demand = colDef(
                  name = "Demand (units)",
                  
                  cell = data_bars(df1, 
                                   #round_edges = TRUE
                                   #value <- format(value, big.mark = ","),
                                   #number_fmt = big.mark = ",",
                                   fill_color = "#3fc1c9",
                                   #fill_opacity = 0.8, 
                                   text_position = "outside-end"
                  )
                  
                ),
                

                
                Calculated.Coverage.in.Periods = colDef(
                  name = "Coverage (Periods)",
                  maxWidth = 90,
                  
                  cell= color_tiles(df1, color_ref = "f_colorpal")
                ),
                
                
                f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages
                

                
                `Projected.Inventories.Qty`= colDef(
                  name = "Projected Inventories (units)",
                  format = colFormat(separators = TRUE, digits=0),
                  
                  style = function(value) {
                    if (value > 0) {
                      color <- "#008000"
                    } else if (value < 0) {
                      color <- "#e00000"
                    } else {
                      color <- "#777"
                    }
                    list(color = color
                         #fontWeight = "bold"
                    )
                  }
                ),
                

                
                Supply = colDef(
                  name = "Supply (units)",
                  cell = data_bars(df1, 
                                   
                                   #round_edges = TRUE
                                   #value <- format(value, big.mark = ","),
                                   #number_fmt = big.mark = ",",
                                   fill_color = "#3CB371",
                                   #fill_opacity = 0.8, 
                                   text_position = "outside-end"
                  )
                  #format = colFormat(separators = TRUE, digits=0)
                  #number_fmt = big.mark = ","
                ),
                
                
                
                PI.Index = colDef(
                  name = "Analysis",
                  
                  cell = function(value) {
                    color <- switch(
                      value,
                      TBC = "hsl(154, 3%, 50%)",
                      OverStock = "hsl(214, 45%, 50%)",
                      OK = "hsl(154, 64%, 50%)",
                      Alert = "hsl(30, 97%, 70%)",
                      Shortage = "hsl(3, 69%, 50%)"
                    )
                    PI.Index <- status_PI.Index(color = color)
                    tagList(PI.Index, value)
                  }),
                
                
                
                `Safety.Stocks`= colDef(
                  name = "Safety Stocks (units)",
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                `Maximum.Stocks`= colDef(
                  name = "Maximum Stocks (units)",
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                `Opening`= colDef(
                  name = "Opening Inventories (units)",
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                `Min.Cov`= colDef(name = "Min Stocks Coverage (Periods)"),
                
                `Max.Cov`= colDef(name = "Maximum Stocks Coverage (Periods)"),
                
                
                # ratios
                `Ratio.PI.vs.min`= colDef(name = "Ratio PI vs min"),
                
                `Ratio.PI.vs.Max`= colDef(name = "Ratio PI vs Max")
                
                
                
                
              ), # close columns lits
              
              columnGroups = list(
                colGroup(name = "Projected Inventories", columns = c("Calculated.Coverage.in.Periods", 
                                                                     "Projected.Inventories.Qty")),
                
                colGroup(name = "Stocks Levels Parameters", columns = c("Min.Cov", 
                                                                        "Max.Cov",
                                                                        "Safety.Stocks",
                                                                        "Maximum.Stocks")),
                
                colGroup(name = "Analysis Features", columns = c("PI.Index", 
                                                                        "Ratio.PI.vs.min",
                                                                        "Ratio.PI.vs.Max"))
                
              )
              
    ) # close reactable

2.3.2) For multiple items

We can see that in the column [PI.Index] we have several possible values, among them: - OverStock - OK - Alert - Shortage

We might be interested especially in 3 of them : OverStock / Alert / Shortage And a second question after having identified those values could be: - my how much (vs target) are we in an Overstock or Alert situation?

The 2 ratios become quite useful here, to focus only on the important differences: - Ratio.PI.vs.min - Ratio.PI.vs.Max

Let’s say that we want to look only at the Overstock situations, without considering any particular ratio. We can then highlight only the Overstock and just create a Supply Risks Alarm table as we saw previously.

If we want to focus on only the important Overstocks, we can filter based on the field [Ratio.PI.vs.Max].

Let’s highlight only the Overstocks :



# set a working dataframe
df1 <-as.data.frame(calculated_projection_and_analysis)


#------------------------------
# Filter

# subset Period based on those Starting and Ending Periods
df1 <- subset(df1,df1$Period >= "2022-07-03" & df1$Period <= "2022-09-25")


df1$PI.Index <- if_else(df1$PI.Index == "OverStock", "OverStock", "")


glimpse(df1)
#> Rows: 130
#> Columns: 14
#> $ DFU                            <chr> "Item 000001", "Item 000001", "Item 000…
#> $ Period                         <date> 2022-07-03, 2022-07-10, 2022-07-17, 20…
#> $ Demand                         <dbl> 364, 364, 364, 260, 736, 859, 859, 859,…
#> $ Opening                        <dbl> 6570, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ Calculated.Coverage.in.Periods <dbl> 16.8, 15.8, 14.8, 13.8, 12.8, 11.8, 10.…
#> $ Projected.Inventories.Qty      <dbl> 6206, 5842, 5478, 5218, 4482, 3623, 276…
#> $ Supply                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ Min.Cov                        <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
#> $ Max.Cov                        <dbl> 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,…
#> $ Safety.Stocks                  <dbl> 1724, 2219, 2714, 3313, 2850, 2340, 183…
#> $ Maximum.Stocks                 <dbl> 5821, 5471, 5132, 4904, 4185, 3693, 334…
#> $ PI.Index                       <chr> "OverStock", "OverStock", "OverStock", …
#> $ Ratio.PI.vs.min                <dbl> 3.60, 2.63, 2.02, 1.58, 1.57, 1.55, 1.5…
#> $ Ratio.PI.vs.Max                <dbl> 1.07, 1.07, 1.07, 1.06, 1.07, 0.98, 0.8…

Now let’s create the table



#--------
# Keep Initial data
#--------
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
Initial_DB <- df1
   


#------------------------------
# Transform
    
    
    
#--------
# Create a Summary database
#--------
    
# set a working df
df1 <- Initial_DB
    
# aggregate
df1 <- df1 %>% select(
      DFU,
      Demand) %>%
      group_by(DFU
               ) %>%
      summarise(Demand.Qty = sum(Demand)
      )
    

# Get Results
Value_DB <- df1



#--------
# Create the SRA
#--------

# set a working df
df1 <- Initial_DB

#------------------------------
# keep only the needed columns
df1 <- df1[,c("DFU","Period","PI.Index")]

# spread data
df1 <- df1 %>% spread(Period, PI.Index)

# replace missing values by zero
df1[is.na(df1)] <- 0

# Get Results
SRA_DB <- df1
 



#--------
# Merge both database
#--------

# merge both databases
df1 <- left_join(Value_DB, SRA_DB)
#> Joining with `by = join_by(DFU)`

# Sort by Demand.Qty descending
df1 <- df1[order(-df1$Demand.Qty),]


# rename column
df1 <- df1 %>% rename(
      "Total Demand (units)" = Demand.Qty
    )


# Get Results
Interim_DB <- df1

Let’s visualize through a DT table :


# set a working df
df1 <- Interim_DB

# create DT
datatable(df1,
              #filter = list(position = 'top', clear = FALSE),

              options = list(
                searching = FALSE,
                pageLength = 20,
                columnDefs = list(list(width = '200px', targets = c(1,2)))
              ),rownames= FALSE) %>%

      formatRound(2:2, 1) %>%

      formatStyle(columns = c(1:100), fontSize = '85%') %>%
  
  formatStyle(
    3:20,
    backgroundColor = styleEqual(
      c('OverStock'), c('orange')
    )) %>%

    formatStyle(
      2:2,
      backgroundColor = 'mediumseagreen'
    ) 

2.4) Cockpit

We can imagine a cockpit informing us about : - OverStock - Alert - Shortage

2.4.1) Create Dataframe




#------------------------------
# Get data
df1 <- calculated_projection_and_analysis
df1 <- as.data.frame(df1)


#------------------------------
# Filter

# subset Period based on those Starting and Ending Periods
df1 <- subset(df1,df1$Period >= "2022-07-03" & df1$Period <= "2022-09-25")


# keep this initial dataset
Initial_DB <- df1





#-----------------
# Get Summary of variables
#-----------------

# set a working df
df1 <- Initial_DB

# aggregate
df1 <- df1 %>% select(DFU, 
                         Demand,
                         Opening,
                         Supply) %>%
      group_by(DFU) %>%
      summarise(Demand = sum(Demand),
                Opening = sum(Opening),
                Supply = sum(Supply)
      )
    
# let's calculate the share of Demand
df1$Demand.pc <- df1$Demand / sum(df1$Demand)
    
    
# keep Results
Value_DB <- df1
    

 
    
#-----------------
# Get Sparklines Demand
#-----------------
    
# set a working df
df1 <- Initial_DB
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Demand)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Demand.Quantity = list(Quantity))
    
# keep Results
Demand_Sparklines_DB <- df1

    
#-----------------
# Get Sparklines Supply
#-----------------
    
# set a working df
df1 <- Initial_DB
    
# replace missing values by zero
df1$Supply[is.na(df1$Supply)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Supply)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Supply.Quantity = list(Quantity))
    
# keep Results
Supply_Sparklines_DB <- df1






#-----------------
# Get Sparklines Projected Inventories
#-----------------
    
# set a working df
df1 <- Initial_DB
    
# replace missing values by zero
df1$Projected.Inventories.Qty[is.na(df1$Projected.Inventories.Qty)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Projected.Inventories.Qty)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(PI.Quantity = list(Quantity))
    
# keep Results
PI_Sparklines_DB <- df1










#--------
# Check if OverStock
#--------

# set a working df
df1 <- Initial_DB

# focus on OverStocks, by filtering data
df1$PI.Index.Value <- if_else(df1$PI.Index == "OverStock", 1, 0)

# aggregate
df1 <- df1 %>% select(DFU, PI.Index.Value) %>%
      group_by(DFU) %>%
      summarise(OverStock = max(PI.Index.Value)
      )

# Get Results
OverStock_DB <- df1



#--------
# Check if Alert
#--------

# set a working df
df1 <- Initial_DB

# focus on Alert, by filtering data
df1$PI.Index.Value <- if_else(df1$PI.Index == "Alert", 1, 0)

# aggregate
df1 <- df1 %>% select(DFU, PI.Index.Value) %>%
      group_by(DFU) %>%
      summarise(Alert = max(PI.Index.Value)
      )

# Get Results
Alert_DB <- df1




#--------
# Check if Shortage
#--------

# set a working df
df1 <- Initial_DB

# focus on Shortage, by filtering data
df1$PI.Index.Value <- if_else(df1$PI.Index == "Shortage", 1, 0)

# aggregate
df1 <- df1 %>% select(DFU, PI.Index.Value) %>%
      group_by(DFU) %>%
      summarise(Shortage = max(PI.Index.Value)
      )

# Get Results
Shortage_DB <- df1









#-----------------
# Merge dataframes
#-----------------

# merge
df1 <- left_join(Value_DB, Demand_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Supply_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, PI_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, OverStock_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Alert_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Shortage_DB)
#> Joining with `by = join_by(DFU)`


# reorder columns
df1 <- df1 %>% select(DFU, Demand, Demand.pc, Demand.Quantity,
                      Supply, Supply.Quantity,
                      Opening,
                      PI.Quantity,
                      OverStock,
                      Alert,
                      Shortage)




# replace figures by values
df1$OverStock <- if_else(df1$OverStock == 1, "Y", "")
df1$Alert <- if_else(df1$Alert == 1, "Y", "")
df1$Shortage <- if_else(df1$Shortage == 1, "Y", "")



# get results
Summary_DB <- df1

glimpse(Summary_DB)
#> Rows: 10
#> Columns: 11
#> $ DFU             <chr> "Item 000001", "Item 000002", "Item 000003", "Item 000…
#> $ Demand          <dbl> 6185, 18458, 1314, 12336, 29700, 17846, 3870, 49416, 9…
#> $ Demand.pc       <dbl> 0.042589379, 0.127100204, 0.009048091, 0.084944637, 0.…
#> $ Demand.Quantity <list> <364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 34…
#> $ Supply          <dbl> 0, 15120, 0, 10000, 30000, 17556, 2593, 27000, 0, 2520
#> $ Supply.Quantity <list> <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>, <0, 0, 0, 103…
#> $ Opening         <dbl> 6570, 5509, 2494, 7172, 17500, 9954, 2092, 17500, 122…
#> $ PI.Quantity     <list> <6206, 5842, 5478, 5218, 4482, 3623, 2764, 1905, 1632,…
#> $ OverStock       <chr> "Y", "", "Y", "Y", "Y", "", "", "", "Y", ""
#> $ Alert           <chr> "", "Y", "", "Y", "Y", "Y", "Y", "Y", "Y", "Y"
#> $ Shortage        <chr> "", "", "", "", "", "", "", "Y", "", "Y"

2.4.2) Display Table

We will use again the previous function to display a badge.

Now let’s create a reactable :



reactable(df1,compact = TRUE,
              
              defaultSortOrder = "desc",
              defaultSorted = c("Demand"),
              defaultPageSize = 20,
              
              columns = list(
                
                `DFU` = colDef(name = "DFU"),

                
                `Demand`= colDef(
                  name = "Total Demand (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0),
                  style = list(background = "yellow",fontWeight = "bold")
                ),
                
                
                `Demand.pc`= colDef(
                  name = "Share of Demand (%)",
                  format = colFormat(percent = TRUE, digits = 1)
                ), # close %
                
                
                `Supply`= colDef(
                  name = "Total Supply (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                
                `Opening`= colDef(
                  name = "Opening Inventories (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                Demand.Quantity = colDef(
                  name = "Projected Demand",
                  cell = function(value, index) {
                    sparkline(df1$Demand.Quantity[[index]])
                  }),
                

                
                
                Supply.Quantity = colDef(
                  name = "Projected Supply",
                  cell = function(values) {
                    sparkline(values, type = "bar"
                              #chartRangeMin = 0, chartRangeMax = max(chickwts$weight)
                    )
                  }),
                
                
                PI.Quantity = colDef(
                  name = "Projected Inventories",
                  cell = function(values) {
                    sparkline(values, type = "bar"
                              #chartRangeMin = 0, chartRangeMax = max(chickwts$weight)
                    )
                  }),
                
                
                
                OverStock = colDef(
                  name = "OverStock",
                  
                  cell = function(value) {
                    color <- switch(
                      value,
                      N = "hsl(120,61%,50%)",
                      Y = "rgb(135,206,250)"
                    )
                    badge <- status_badge(color = color)
                    tagList(badge, value)
                  }),
                
                
                Alert = colDef(
                  name = "Alert",
                  
                  cell = function(value) {
                    color <- switch(
                      value,
                      N = "hsl(120,61%,50%)",
                      Y = "hsl(39,100%,50%)"
                    )
                    badge <- status_badge(color = color)
                    tagList(badge, value)
                  }),
                
                
                Shortage = colDef(
                  name = "Shortage",
                  
                  cell = function(value) {
                    color <- switch(
                      value,
                      N = "hsl(120,61%,50%)",
                      Y = "hsl(16,100%,50%)"
                    )
                    badge <- status_badge(color = color)
                    tagList(badge, value)
                  })
                


 
                
                
              ), # close columns list
              
              defaultColDef = colDef(footerStyle = list(fontWeight = "bold")),
              
              
              columnGroups = list(
                
                colGroup(name = "Demand",
                         columns = c("Demand",
                                     "Demand.pc",
                                     "Demand.Quantity")),
                
                colGroup(name = "Supply",
                         columns = c("Supply", "Supply.Quantity")),
                
                
                colGroup(name = "Inventories",
                         columns = c("Opening", "PI.Quantity")),
                
                
                colGroup(name = "Analysis",
                         columns = c("OverStock", "Alert", "Shortage"))
                
                
              )
          
) # close reactable

We could look at it through a different angle, considering the Period. For example a display of the analysis for the next 4 periods of time, the next 5 to 8, the next 9 to 12 periods. This way we get one more insight : when the issue (OverStock / Delay / Shortage) will occur.

Part 3 : DRP Calculation

3.1) Overview Demo dataset

Let’s look at the demo dataset blueprint_drp.

The raw data look like this:


df1 <- blueprint_drp

glimpse(df1)
#> Rows: 520
#> Columns: 9
#> $ DFU       <chr> "Item 000001", "Item 000001", "Item 000001", "Item 000001", …
#> $ Period    <date> 2022-07-03, 2022-07-10, 2022-07-17, 2022-07-24, 2022-07-31,…
#> $ Demand    <dbl> 364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 349, 349, …
#> $ Opening   <dbl> 6570, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ Supply    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5000, 0, 0, 0, 0, …
#> $ FH        <chr> "Frozen", "Frozen", "Free", "Free", "Free", "Free", "Free", …
#> $ SSCov     <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, …
#> $ DRPCovDur <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, …
#> $ MOQ       <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …

3.1.1) DRP Parameters

Let’s have a summary view, using the reactable package:




#-----------------
# Get Summary of variables
#-----------------

# set a working df
df1 <- blueprint_drp

# aggregate
df1 <- df1 %>% select(DFU,
                      Demand,
                      Opening,
                      Supply,
                      SSCov,
                      DRPCovDur,
                      MOQ) %>%
      group_by(DFU) %>%
      summarise(Demand = sum(Demand),
                Opening = sum(Opening),
                Supply = sum(Supply),
                SSCov = mean(SSCov),
                DRPCovDur = mean(DRPCovDur),
                MOQ = mean(MOQ)
      )
    
# let's calculate the share of Demand
df1$Demand.pc <- df1$Demand / sum(df1$Demand)
    
    
# keep Results
Value_DB <- df1
    

 
    
#-----------------
# Get Sparklines Demand
#-----------------
    
# set a working df
df1 <- blueprint_drp
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Demand)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Demand.Quantity = list(Quantity))
    
# keep Results
Demand_Sparklines_DB <- df1

    
#-----------------
# Get Sparklines Supply
#-----------------
    
# set a working df
df1 <- blueprint_drp
    
# replace missing values by zero
df1$Supply[is.na(df1$Supply)] <- 0
    
# aggregate
df1 <- df1 %>%
      group_by(
        DFU,
        Period
      ) %>%
      summarise(
        Quantity = sum(Supply)
      )
#> `summarise()` has grouped output by 'DFU'. You can override using the `.groups`
#> argument.
    
    # generate Sparkline
    df1 <- df1 %>%
      group_by(DFU) %>%
      summarise(Supply.Quantity = list(Quantity))
    
# keep Results
Supply_Sparklines_DB <- df1




#-----------------
# Merge dataframes
#-----------------

# merge
df1 <- left_join(Value_DB, Demand_Sparklines_DB)
#> Joining with `by = join_by(DFU)`
df1 <- left_join(df1, Supply_Sparklines_DB)
#> Joining with `by = join_by(DFU)`


# reorder columns
df1 <- df1 %>% select(DFU,
                      SSCov,
                      DRPCovDur,
                      MOQ, 
                      Demand, Demand.pc, Demand.Quantity, Opening,
                      Supply, Supply.Quantity)


# get results
Summary_DB <- df1

glimpse(Summary_DB)
#> Rows: 10
#> Columns: 10
#> $ DFU             <chr> "Item 000001", "Item 000002", "Item 000003", "Item 000…
#> $ SSCov           <dbl> 3, 3, 2, 3, 2, 5, 8, 2, 8, 6
#> $ DRPCovDur       <dbl> 3, 2, 2, 4, 4, 3, 4, 4, 8, 10
#> $ MOQ             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
#> $ Demand          <dbl> 20294, 60747, 5975, 68509, 119335, 101810, 13823, 2075…
#> $ Demand.pc       <dbl> 0.032769097, 0.098089304, 0.009647943, 0.110622748, 0.…
#> $ Demand.Quantity <list> <364, 364, 364, 260, 736, 859, 859, 859, 273, 349, 349…
#> $ Opening         <dbl> 6570, 5509, 2494, 7172, 17500, 9954, 2092, 17500, 1222…
#> $ Supply          <dbl> 6187, 17927, 3000, 20000, 30000, 21660, 6347, 73000, 7…
#> $ Supply.Quantity <list> <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5000, 0, 0…

and now let’s create the reactable :


reactable(df1,compact = TRUE,
              
              defaultSortOrder = "desc",
              defaultSorted = c("Demand"),
              defaultPageSize = 20,
              
              columns = list(
                
                `DFU` = colDef(name = "DFU"),

                
                `Demand`= colDef(
                  name = "Total Demand (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0),
                  style = list(background = "yellow",fontWeight = "bold")
                ),
                
                
                `Demand.pc`= colDef(
                  name = "Share of Demand (%)",
                  format = colFormat(percent = TRUE, digits = 1)
                ), # close %
                
                
                `Supply`= colDef(
                  name = "Total Supply (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                
                `Opening`= colDef(
                  name = "Opening Inventories (units)",
                  aggregate = "sum", footer = function(values) formatC(sum(values),format="f", big.mark=",", digits=0),
                  format = colFormat(separators = TRUE, digits=0)
                ),
                
                
                Demand.Quantity = colDef(
                  name = "Projected Demand",
                  cell = function(value, index) {
                    sparkline(df1$Demand.Quantity[[index]])
                  }),
                

                
                
                Supply.Quantity = colDef(
                  name = "Projected Supply",
                  cell = function(values) {
                    sparkline(values, type = "bar"
                              #chartRangeMin = 0, chartRangeMax = max(chickwts$weight)
                    )
                  }),
                
                
                
                `SSCov`= colDef(
                  name = "Safety Stock (Periods)",
                  style = function(value) {
                    bar_style(width = value / max(df1$Min.Cov), fill = "hsl(208, 70%, 90%)")
                  }
                ),
                
                
                `DRPCovDur`= colDef(
                  name = "Frequency of Supply (Periods)",
                  style = function(value) {
                    bar_style(width = value / max(df1$Max.Cov), fill = "hsl(0,79%,72%)")
                  }
                )
                


 
                
                
              ), # close columns list
              
              defaultColDef = colDef(footerStyle = list(fontWeight = "bold")),
              
              
              columnGroups = list(
                
                
                colGroup(name = "DRP parameters",
                         columns = c("SSCov", "DRPCovDur", "MOQ")),
                
                colGroup(name = "Demand",
                         columns = c("Demand",
                                     "Demand.pc",
                                     "Demand.Quantity")),
                
                colGroup(name = "Supply",
                         columns = c("Supply", "Supply.Quantity"))
                
                
              )
          
) # close reactable
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Min.Cov`.
#> Warning in max(df1$Min.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf
#> Warning: Unknown or uninitialised column: `Max.Cov`.
#> Warning in max(df1$Max.Cov): no non-missing arguments to max; returning -Inf

3.1.2) Look at Frozen Horizon

We have 3 values for the Frozen Horizon: - Frozen - Free

The DRP Calculation is only performed within the Free Horizon, and takes into account the values of the Supply Plan which are within the Frozen Horizon.


# keep only needed columns
df1 <- blueprint_drp %>% select(DFU, Period, FH)

# spread
df1 <- df1 %>% spread(Period, FH)


# create DT
datatable(df1,
              #filter = list(position = 'top', clear = FALSE),

              options = list(
                searching = FALSE,
                pageLength = 20
                #columnDefs = list(list(width = '200px', targets = c(1,2)))
              ),rownames= FALSE) %>%

      #formatRound(2:2, 1) %>%

      #formatStyle(columns = c(1:100), fontSize = '85%') %>%
  
  formatStyle(
    2:20,
    backgroundColor = styleEqual(
      c('Frozen'), c('yellow')
    )) 

3.2) Calculate DRP

Let’s apply the drp() function :



# set a working df
df1 <- blueprint_drp
df1 <- as.data.frame(df1)


# calculate drp
calculated_drp <- drp(data = df1,
           DFU = DFU,
           Period = Period,
           Demand =  Demand,
           Opening = Opening,
           Supply = Supply,
           SSCov = SSCov,
           DRPCovDur = DRPCovDur,
           MOQ = MOQ,
           FH = FH
)
#> Joining with `by = join_by(DFU, Period)`
#> Joining with `by = join_by(DFU, Period)`
#> Joining with `by = join_by(DFU, Period)`


head(calculated_drp)
#>           DFU     Period Demand Opening Supply SSCov DRPCovDur Stock.Max MOQ
#> 1 Item 000001 2022-07-03    364    6570      0     3         3         6   1
#> 2 Item 000001 2022-07-10    364       0      0     3         3         6   1
#> 3 Item 000001 2022-07-17    364       0      0     3         3         6   1
#> 4 Item 000001 2022-07-24    260       0      0     3         3         6   1
#> 5 Item 000001 2022-07-31    736       0      0     3         3         6   1
#> 6 Item 000001 2022-08-07    859       0      0     3         3         6   1
#>       FH Safety.Stocks Maximum.Stocks DRP.Calculated.Coverage.in.Periods
#> 1 Frozen           988           3442                               16.8
#> 2 Frozen          1360           3937                               15.8
#> 3   Free          1855           3846                               14.8
#> 4   Free          2454           3935                               13.8
#> 5   Free          2577           3548                               12.8
#> 6   Free          1991           3038                               11.8
#>   DRP.Projected.Inventories.Qty DRP.plan
#> 1                          6206        0
#> 2                          5842        0
#> 3                          5478        0
#> 4                          5218        0
#> 5                          4482        0
#> 6                          3623        0

3.3) Analysis

3.3.1) For one Item

Let’s look at the Item 000004 :


calculated_drp <-as.data.frame(calculated_drp)

# filter data
Selected_DB <- filter(calculated_drp, calculated_drp$DFU == "Item 000004")


glimpse(Selected_DB)
#> Rows: 52
#> Columns: 15
#> $ DFU                                <chr> "Item 000004", "Item 000004", "Item…
#> $ Period                             <date> 2022-07-03, 2022-07-10, 2022-07-17…
#> $ Demand                             <dbl> 1296, 1296, 1296, 926, 678, 791, 79…
#> $ Opening                            <dbl> 7172, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
#> $ Supply                             <dbl> 0, 0, 0, 0, 0, 0, 0, 10000, 0, 0, 0…
#> $ SSCov                              <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,…
#> $ DRPCovDur                          <dbl> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,…
#> $ Stock.Max                          <dbl> 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,…
#> $ MOQ                                <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
#> $ FH                                 <chr> "Frozen", "Frozen", "Frozen", "Froz…
#> $ Safety.Stocks                      <dbl> 3518, 2900, 2395, 2260, 2373, 2142,…
#> $ Maximum.Stocks                     <dbl> 6569, 5833, 5579, 5695, 6059, 6053,…
#> $ DRP.Calculated.Coverage.in.Periods <dbl> 6.1, 5.1, 4.1, 3.1, 2.1, 1.1, 0.1, …
#> $ DRP.Projected.Inventories.Qty      <dbl> 5876, 4580, 3284, 2358, 1680, 889, …
#> $ DRP.plan                           <dbl> 0, 0, 0, 0, 0, 0, 0, 10000, 0, 0, 0…

Let’s create a table using reactable :


# keep only the needed columns
df1 <- Selected_DB %>% select(Period,
                              FH,
                              Demand,
                              DRP.Calculated.Coverage.in.Periods,
                              DRP.Projected.Inventories.Qty,
                              DRP.plan)



# replace missing values by zero
df1$DRP.Projected.Inventories.Qty[is.na(df1$DRP.Projected.Inventories.Qty)] <- 0
df1$DRP.plan[is.na(df1$DRP.plan)] <- 0


# create a f_colorpal field
df1 <- df1 %>% mutate(f_colorpal = case_when( DRP.Calculated.Coverage.in.Periods > 6 ~ "#FFA500",
                                              DRP.Calculated.Coverage.in.Periods > 2 ~ "#32CD32",
                                              DRP.Calculated.Coverage.in.Periods > 0 ~ "#FFFF99",
                                              TRUE ~ "#FF0000" ))



# create reactable
reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE,

              striped = TRUE, highlight = TRUE, compact = TRUE,
              defaultPageSize = 20,

              columns = list(

                Demand = colDef(
                  name = "Demand (units)",

                  cell = data_bars(df1,
                                   fill_color = "#3fc1c9",
                                   text_position = "outside-end"
                  )

                ),

              DRP.Calculated.Coverage.in.Periods = colDef(
                name = "Coverage (Periods)",
                maxWidth = 90,
                cell= color_tiles(df1, color_ref = "f_colorpal")
              ),

              f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages

                `DRP.Projected.Inventories.Qty`= colDef(
                  name = "Projected Inventories (units)",
                  format = colFormat(separators = TRUE, digits=0),

                  style = function(value) {
                    if (value > 0) {
                      color <- "#008000"
                    } else if (value < 0) {
                      color <- "#e00000"
                    } else {
                      color <- "#777"
                    }
                    list(color = color
                         #fontWeight = "bold"
                    )
                  }
                ),

              DRP.plan = colDef(
                name = "Calculated Supply (units)",
                cell = data_bars(df1,
                                 fill_color = "#3CB371",
                                 text_position = "outside-end"
                                 )
                )

              ), # close columns lits

              columnGroups = list(
                colGroup(name = "Projected Inventories", columns = c("DRP.Calculated.Coverage.in.Periods", "DRP.Projected.Inventories.Qty"))

              )

    ) # close reactable

3.3.2) For multiple Items

We can create a simple table that we could call a “Supply Risks Alarm”, giving a quick overview of: - projected inventories - projected coverages


#------------------------------
# Get data
df1 <- calculated_drp
df1 <- as.data.frame(df1)


#------------------------------
# Filter

# subset Period based on those Starting and Ending Periods
df1 <- subset(df1,df1$Period >= "2022-07-03" & df1$Period <= "2022-09-25")


#--------
# Keep Initial data
#--------
    
# replace missing values by zero
df1$Demand[is.na(df1$Demand)] <- 0
    
Initial_DB <- df1
   


#------------------------------
# Transform
    
    
    
#--------
# Create a Summary database
#--------
    
# set a working df
df1 <- Initial_DB
    
# aggregate
df1 <- df1 %>% select(
      DFU,
      Demand) %>%
      group_by(DFU
               ) %>%
      summarise(Demand.Qty = sum(Demand)
      )
    

# Get Results
Value_DB <- df1



#--------
# Create the SRA
#--------

# set a working df
df1 <- Initial_DB

#------------------------------
# keep only the needed columns
df1 <- df1[,c("DFU","Period","DRP.Calculated.Coverage.in.Periods")]

# format as numeric
df1$DRP.Calculated.Coverage.in.Periods <- as.numeric(df1$DRP.Calculated.Coverage.in.Periods)

# formatting 1 digit after comma
df1$DRP.Calculated.Coverage.in.Periods = round(df1$DRP.Calculated.Coverage.in.Periods, 1)

# spread data
df1 <- df1 %>% spread(Period, DRP.Calculated.Coverage.in.Periods)

# replace missing values by zero
df1[is.na(df1)] <- 0

# Get Results
SRA_DB <- df1
 



#--------
# Merge both database
#--------

# merge both databases
df1 <- left_join(Value_DB, SRA_DB)
#> Joining with `by = join_by(DFU)`

# Sort by Demand.Qty descending
df1 <- df1[order(-df1$Demand.Qty),]


# rename column
df1 <- df1 %>% rename(
      "Total Demand (units)" = Demand.Qty
    )


# Get Results
Interim_DB <- df1

Let’s visualize through a DT table :


#------------------------------
# create DT
  


df1 <- Interim_DB

datatable(df1,
              #filter = list(position = 'top', clear = FALSE),

              options = list(
                searching = FALSE,
                pageLength = 20,
                columnDefs = list(list(width = '200px', targets = c(1,2)))
              ),rownames= FALSE) %>%

      formatRound(2:2, 1) %>%

      formatStyle(columns = c(1:100), fontSize = '85%') %>%

      formatStyle(
        3:20,
        backgroundColor = styleInterval(c(-0.1,0.0,4.0), c('#FF6347', 'orange', 'yellow','lightblue'))
      ) %>%

    formatStyle(
      2:2,
      backgroundColor = 'mediumseagreen'
    ) 

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.