The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The poset package provides simple and efficient statistical routines for partially ordered data, such as multivariate ordinal response under consensus or prioritized order. The current version focuses on the win ratio/net benefit approach (Mao 2024) via generalized pairwise comparisons (Buyse 2010).
Install poset from CRAN with:
install.packages("poset")
You can install the development version from GitHub with:
# install.packages("devtools")
::install_github("lmaowisc/poset") devtools
Here is a basic example for two-sample testing and regression.
library(poset)
## data example
head(liver)
#> R1NASH R2NASH Sex AF Steatosis SSF2 LSN
#> 1 3 2 M FALSE 30 0.21 2.33
#> 2 1 1 F FALSE 5 0.38 2.86
#> 3 4 2 M FALSE 70 0.58 3.65
#> 4 4 4 F TRUE 30 -0.08 2.73
#> 5 4 3 M TRUE 70 -0.04 2.53
#> 6 3 3 M FALSE 10 0.02 2.88
<- liver[liver$AF, c("R1NASH", "R2NASH")] # advanced
Y1 <- liver[!liver$AF, c("R1NASH", "R2NASH")] # not advanced
Y0 wrtest(Y1, Y0)
#> Call:
#> wrtest(Y1 = Y1, Y0 = Y0)
#>
#> Two-sample (Y1 vs Y0) win ratio/net benefit analysis
#>
#> Number of pairs: N1 x N0 = 69 x 116 = 8004
#> Win: 4251 (53.1%)
#> Loss: 2392 (29.9%)
#> Tie: 1361 (17%)
#>
#> Win ratio (95% CI): 1.78 (1.16, 2.73), p-value = 0.00856547
#> Net benefit (95% CI): 0.232 (0.065, 0.4), p-value = 0.006577537
<- 5 - liver[, c("R1NASH", "R2NASH")] # lower score is better
Y <- cbind("Female" = liver$Sex == "F",
Z c("AF", "Steatosis", "SSF2", "LSN")]) # covariates
liver[, <- wreg(Y, Z) # fit model
obj
obj#> Call:
#> wreg(Y = Y, Z = Z)
#>
#> n = 154 subjects with complete data
#> Comparable (win/loss) pairs: 9548/11781 = 81%
#>
#> Female AF Steatosis SSF2 LSN
#> -0.18956 -0.9660827 -0.02779146 -0.007926333 -0.1029914
summary(obj)
#> Call:
#> wreg(Y = Y, Z = Z)
#>
#> n = 154 subjects with complete data
#> Comparable (win/loss) pairs: 9548/11781 = 81%
#>
#> Newton-Raphson algoritm converged in 7 iterations
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> Female -0.189560 0.8273 0.259988 -0.729 0.465934
#> AF -0.966083 0.3806 0.280313 -3.446 0.000568 ***
#> Steatosis -0.027791 0.9726 0.005281 -5.262 1.42e-07 ***
#> SSF2 -0.007926 0.9921 0.003953 -2.005 0.044953 *
#> LSN -0.102991 0.9021 0.125718 -0.819 0.412657
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> Female 0.82732 1.20872 0.49702 1.3771
#> AF 0.38057 2.62763 0.21970 0.6592
#> Steatosis 0.97259 1.02818 0.96258 0.9827
#> SSF2 0.99210 1.00796 0.98445 0.9998
#> LSN 0.90213 1.10848 0.70512 1.1542
#>
#> Overall Wald test = 79.129 on 5 df, p = 1.221245e-15
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.