The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

ppsbm: Clustering in Longitudinal Networks

Stochastic block model used for dynamic graphs represented by Poisson processes. To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson process with intensity driven by the individuals’ latent groups. The model is shown to be identifiable and its estimation is based on a semiparametric variational expectation-maximization algorithm. Two versions of the method are developed, using either a nonparametric histogram approach (with an adaptive choice of the partition size) or kernel intensity estimators. The number of latent groups can be selected by an integrated classification likelihood criterion. Y. Baraud and L. Birgé (2009). <doi:10.1007/s00440-007-0126-6>. C. Biernacki, G. Celeux and G. Govaert (2000). <doi:10.1109/34.865189>. M. Corneli, P. Latouche and F. Rossi (2016). <doi:10.1016/j.neucom.2016.02.031>. J.-J. Daudin, F. Picard and S. Robin (2008). <doi:10.1007/s11222-007-9046-7>. A. P. Dempster, N. M. Laird and D. B. Rubin (1977). <http://www.jstor.org/stable/2984875>. G. Grégoire (1993). <http://www.jstor.org/stable/4616289>. L. Hubert and P. Arabie (1985). <doi:10.1007/BF01908075>. M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul (1999). <doi:10.1023/A:1007665907178>. C. Matias, T. Rebafka and F. Villers (2018). <doi:10.1093/biomet/asy016>. C. Matias and S. Robin (2014). <doi:10.1051/proc/201447004>. H. Ramlau-Hansen (1983). <doi:10.1214/aos/1176346152>. P. Reynaud-Bouret (2006). <doi:10.3150/bj/1155735930>.

Version: 0.2.2
Imports: Rfast, clue, gtools, parallel
Published: 2018-03-19
DOI: 10.32614/CRAN.package.ppsbm
Author: D. Giorgi, C. Matias, T. Rebafka, F. Villers
Maintainer: Daphné Giorgi <daphne.giorgi at sorbonne-universite.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://cran.r-project.org
NeedsCompilation: no
Materials: README
CRAN checks: ppsbm results

Documentation:

Reference manual: ppsbm.pdf

Downloads:

Package source: ppsbm_0.2.2.tar.gz
Windows binaries: r-devel: ppsbm_0.2.2.zip, r-release: ppsbm_0.2.2.zip, r-oldrel: ppsbm_0.2.2.zip
macOS binaries: r-release (arm64): ppsbm_0.2.2.tgz, r-oldrel (arm64): ppsbm_0.2.2.tgz, r-release (x86_64): ppsbm_0.2.2.tgz, r-oldrel (x86_64): ppsbm_0.2.2.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ppsbm to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.