The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
A doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.
Version: | 1.1.0 |
Depends: | R (≥ 3.5.0) |
Imports: | dplyr, gbm, gam, ggplot2, glmnet, graphics, MASS, mgcv, rlang, stringr, tidyr, survival, randomForestSRC |
Published: | 2024-10-05 |
DOI: | 10.32614/CRAN.package.precmed |
Author: | Lu Tian [aut], Xiaotong Jiang [aut], Gabrielle Simoneau [aut], Biogen MA Inc. [cph], Thomas Debray [ctb, cre], Stan Wijn [ctb], Joana Caldas [ctb] |
Maintainer: | Thomas Debray <tdebray at fromdatatowisdom.com> |
BugReports: | https://github.com/smartdata-analysis-and-statistics/precmed/issues |
License: | Apache License (== 2.0) |
URL: | https://github.com/smartdata-analysis-and-statistics/precmed, https://smartdata-analysis-and-statistics.github.io/precmed/ |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | precmed results |
Reference manual: | precmed.pdf |
Package source: | precmed_1.1.0.tar.gz |
Windows binaries: | r-devel: precmed_1.1.0.zip, r-release: precmed_1.1.0.zip, r-oldrel: precmed_1.1.0.zip |
macOS binaries: | r-release (arm64): precmed_1.1.0.tgz, r-oldrel (arm64): precmed_1.1.0.tgz, r-release (x86_64): precmed_1.1.0.tgz, r-oldrel (x86_64): precmed_1.1.0.tgz |
Old sources: | precmed archive |
Please use the canonical form https://CRAN.R-project.org/package=precmed to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.