The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

priorsense: Prior Diagnostics and Sensitivity Analysis

Provides functions for prior and likelihood sensitivity analysis in Bayesian models. Currently it implements methods to determine the sensitivity of the posterior to power-scaling perturbations of the prior and likelihood.

Version: 1.0.4
Depends: R (≥ 3.6.0)
Imports: checkmate (≥ 2.3.1), ggdist (≥ 3.3.2), ggh4x (≥ 0.2.5), ggplot2 (≥ 3.5.1), matrixStats (≥ 1.3.0), methods, posterior (≥ 1.6.0), rlang (≥ 1.1.4), stats, tibble (≥ 3.2.1), utils
Suggests: bayesplot (≥ 1.11.1), brms (≥ 2.22.0), cmdstanr (≥ 0.8.1), iwmm (≥ 0.0.1), knitr (≥ 1.47), philentropy (≥ 0.8.0), rstan (≥ 2.32.6), testthat (≥ 3.0.0), transport (≥ 0.15), rmarkdown (≥ 2.27)
Published: 2024-11-01
DOI: 10.32614/CRAN.package.priorsense
Author: Noa Kallioinen [aut, cre, cph], Topi Paananen [aut], Paul-Christian Bürkner [aut], Aki Vehtari [aut], Frank Weber [ctb]
Maintainer: Noa Kallioinen <noa.kallioinen at aalto.fi>
License: GPL (≥ 3)
URL: https://n-kall.github.io/priorsense/
NeedsCompilation: no
Additional_repositories: https://topipa.r-universe.dev, https://stan-dev.r-universe.dev
Citation: priorsense citation info
Materials: README NEWS
CRAN checks: priorsense results

Documentation:

Reference manual: priorsense.pdf
Vignettes: Power-scaling sensitivity analysis (source, R code)

Downloads:

Package source: priorsense_1.0.4.tar.gz
Windows binaries: r-devel: priorsense_1.0.4.zip, r-release: priorsense_1.0.4.zip, r-oldrel: priorsense_1.0.4.zip
macOS binaries: r-release (arm64): priorsense_1.0.4.tgz, r-oldrel (arm64): priorsense_1.0.4.tgz, r-release (x86_64): priorsense_1.0.4.tgz, r-oldrel (x86_64): priorsense_1.0.4.tgz
Old sources: priorsense archive

Reverse dependencies:

Reverse suggests: brms

Linking:

Please use the canonical form https://CRAN.R-project.org/package=priorsense to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.