The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This article is a How-to-plot page that covers the most frequently
used charts. It is using Profinit color theme, of course. We start with
displaying distributions, then proportions and relations. Each topic has
an initial setup followed by couple of collapsed sections describing
various use-cases. Code for ggplot2
is provided, some of
the charts are covered by base R
graphics code, too.
In case of any bug/edits/contributions feel free to either create a pull-request or raise an issue in the issue tracker.
It is not purpose of this page to cover all the use-cases, though. For more detailed guide how to design a good chart take a look on the Fundamentals of data visualization (either online or in Profinit’s library).
As a toy dataset, let’s use the dplyr::starwars
dataset
of Star Wars characters. Be ware, it contains information from the first
7 films in the series.
# load packages
library(tidyverse)
library(profiplots)
library(ggalluvial)
library(ggrepel)
# set the aesthetics (theme) of plots
profiplots::set_theme(pal_name = "blue-red", pal_name_discrete="discrete")
movie_series <- c(
"The Phantom Menace",
"Attack of the Clones",
"Revenge of the Sith",
"A New Hope",
"The Empire Strikes Back",
"Return of the Jedi",
"The Force Awakens"
)
get_movie_order <- function(movie_names) {
purrr::map_dbl(movie_names, function(mn) which(mn == movie_series))
}
# prepare dataset: Star Wars characters
sw <-
dplyr::starwars %>%
mutate(
bmi = mass/(height/100)^2,
is_droid = forcats::fct_explicit_na(if_else(sex == "none", "Droid", "Other"), "N/A"),
first_film = purrr::map_chr(films, function(movies) {
movie_ord = get_movie_order(movies)
movies[which.min(movie_ord)]
}),
first_film = factor(first_film, labels = movie_series, ordered = TRUE),
been_in_jedi = purrr::map_lgl(films, ~"Return of the Jedi" %in% .),
n_films = purrr::map_dbl(films, length)
)
Use-case: Visualization of discrete variables distributions.
plt <-
sw %>%
mutate(
gender = forcats::fct_explicit_na(gender), # Make the NA's be obvious (new level)
gender = forcats::fct_infreq(gender), # in case of `nominal` values, sort according to frequency
) %>%
ggplot(aes(x = gender)) +
stat_count(geom = "bar") +
labs(
x = "Character gender",
y = "Count",
title = "Gender distribution among StarWars characters"
)
plt
profinit_cols()
palette,
e.g. profinit blue (#465a9b
) and profinit
red (#E63C41
).sw %>%
mutate(
gender = forcats::fct_explicit_na(gender),
gender = forcats::fct_infreq(gender),
) %>%
ggplot(aes(x = gender)) +
stat_count(geom = "bar", fill = profinit_cols("blue")) + # Adding fill = 'color' makes the plot colored
labs(
x = "Character gender",
y = "Count",
title = "Gender distribution among StarWars characters"
)
sw %>%
mutate(
gender = forcats::fct_explicit_na(gender),
gender = forcats::fct_infreq(gender),
gender = forcats::fct_rev(gender) # Reverse the order to have the most prominent cat on top
) %>%
ggplot(aes(x = gender)) +
stat_count(geom = "bar", fill = profinit_cols("blue")) +
coord_flip() + # This way you can make the barplot horizontal
labs(
x = NULL, # You may get rid of the axis (if the Title is self explanatory)
y = "Count",
title = "Gender distribution among StarWars characters"
)
# prepare a highlighting scale to be reused elsewhere -- be consistent within your report
higlighting_cols <-
profinit_cols("grey", "red") %>%
purrr::set_names(c("FALSE", "TRUE"))
sw %>%
mutate(
gender = forcats::fct_explicit_na(gender),
gender = forcats::fct_infreq(gender),
) %>%
ggplot(aes(x = gender, fill = gender == "feminine")) + # now we highlight category `feminine` via Boolean indicator
stat_count(geom = "bar") +
scale_fill_manual(values = higlighting_cols) + # mapping of highlighting colors
guides(fill = "none") + # no need for legend, the `x` axis says it all
labs(
x = "Character gender",
y = "Count",
title = "Gender distribution among StarWars characters"
)
sw %>%
mutate(
# in case of `ordinal` values, sort according to their order
# (in this case, we treat numbers as category labels).
# Plus have it factor/character for better `x` axis
n_films = forcats::fct_inseq(as.character(n_films)),
) %>%
ggplot(aes(x = n_films)) +
stat_count(geom = "bar") +
labs(
x = "In how many films is the character present?",
y = "Character count",
title = "What is the character durability in StarWars films?"
)
y
axis)
set.seed(123)
data.frame(
x = sample(LETTERS[1:7], prob = 1/(1 + 1/(1:7)), size = 1e5, replace = TRUE)
) %>%
ggplot(aes(x = x)) +
stat_count(geom = "point") + # THIS is the way to change geom (bar -> point)
scale_y_continuous(
limits = c(7000, 17000), # To truncate the y-axis
labels = scales::number # To get better looking numbers on y-axis
) +
labs(
x = "Category",
y = "Number of observations",
title = "Frequency of artificial categories"
)
x
and fill
scales.grey
, blue
or
red
(depending on the report color theme; be
consistent).stringr::str_wrap()
),geom = "point"
) if you need truncated
y
axis. Be aware of misleading potential.scales::number
formatter.Use case: Visualization of continuous variables distribution.
profinit_cols()
palette,
e.g. profinit blue (#465a9b
) and profinit
red (#E63C41
).KDE
instead (maybe as a linechart, not an areachart).KDE
could be a better way if the audience is
skilled enough.sw %>%
filter(!is.na(sex)) %>%
ggplot(aes(x = height, fill = is_droid)) +
scale_fill_profinit(palette = "discrete-full", exact = TRUE) +
stat_bin(geom = "bar", bins = 20, position = "identity", alpha = .7) +
labs(
x = "Height [cm]",
y = "Count",
fill = "Character type",
title = "Height distribution of StarWars characters",
) +
theme(legend.position = "bottom") # You can move the legend to use the full width of the plot for distribution
is_droid_color_mapping <-
profinit_pal("discrete-full")(3) %>%
set_names("Droid", "Other", "N/A")
sw %>%
filter(!is.na(sex)) %>%
ggplot(aes(x = height, fill = is_droid)) +
scale_fill_manual(values = is_droid_color_mapping) +
stat_bin(geom = "bar", bins = 20, position = "identity", alpha = .7) +
labs(
x = "Height [cm]",
y = "Count",
fill = "Character type",
title = "Height distribution of StarWars characters",
) +
theme(legend.position = "bottom")
hist(
x = sw$height,
breaks = 20, # (optional) tweak default setting of bins number
border = NA, # bins border color, NA to turn it off
col = profinit_cols("blue"), # bins fill color, use either of `profinit_cols()`, either `blue`, `red` or `grey` are preferable
main = "Distribution of heights of StarWars characters",
xlab = "Height [cm]", # do not forget to mention units
ylab = "Count",
# TODO: change axes style
# TODO: add grid
)
profinit_cols("blue")
or
profinit_cols("red")
(depending on your report’s color
palette).profinit_cols()
palette) in case of being consistent with a
sub population color mapping (e.g., drawing a sub population)x
axis is continuous & subgroups
wouldKDE
plot (with transparency)histogram
s + transparencylineplot
Use case: Continuous variables distribution for skilled audience. Esp. useful in case of multiple subgroups to be plotted on one chart.
profinit_cols()
palette,
e.g. profinit blue (#465a9b
) and profinit
red (#E63C41
).scale_fill_profinit(palette = "discrete", exact = "FALSE")
to get some colors interpolated from the palette.sw %>%
filter(!is.na(sex)) %>%
ggplot(aes(x = height, fill = is_droid)) +
stat_density(
alpha = .8, # you shall use transparency in case of multiple overlapping groups
position = "identity" # do not position="stack" (default)!
) +
scale_fill_manual(values = is_droid_color_mapping) + # Now, we're using fixed mapping to be consistent with other plots!
labs(
fill = "Character type",
x = "Height [cm]",
y = "Density",
title = "Height distribution of StarWars characters"
) +
theme(legend.position = "bottom")
sw %>%
ggplot(aes(x = height, fill = first_film)) +
stat_density(position = "identity", alpha = .3) + # THIS way you can have fill very transparent
scale_fill_profinit_d("blue-red") +
guides(color = "none", fill = guide_legend(override.aes = list(alpha = .8))) + # THIS way you won't have duplicated legend
labs(
fill = "First film of the character",
x = "Height [cm]",
y = "Density",
title = "Height distribution of StarWars characters",
subtitle = "Given the first films the character played in"
)
higlight_fill_mapping <- c("TRUE" = profinit_cols("red"), "FALSE" = profinit_cols("gray"))
higlight_alpha_mapping <- c("TRUE" = .75, "FALSE" = .25)
higlight_cat <- "Revenge of the Sith"
sw %>%
mutate(
higlight_group = as.character(first_film == higlight_cat)
) %>%
ggplot(
aes(
x = height,
group = first_film,
fill = higlight_group,
alpha = higlight_group,
)
) +
stat_density(
position = "identity"
) +
scale_fill_manual(values = higlight_fill_mapping) +
scale_alpha_manual(values = higlight_alpha_mapping) +
annotate(x = 135, y = 0.014, geom = "text", label = "Revange\nof the Sith", color = profinit_cols("red")) +
annotate(x = 240, y = 0.014, geom = "text", label = "A New Hope", color = profinit_cols("grey"), alpha = .4) +
annotate(x = 210, y = 0.045, geom = "text", label = "The Phantom\nManace", color = profinit_cols("grey"), alpha = .4) +
guides(alpha = "none", fill = "none") + # THIS way you won't have duplicated
labs(
x = "Height [cm]",
y = "Density",
title = paste0("Characters in SW:", higlight_cat, " tends to be smaller"),
subtitle = "Characters grouped by the first SW films they played in"
)
histograms
(people are more familiar
with them)KDE
into your report.Use-case: Visualizing proportions of category levels. (Avoiding pie-chart).
stat_count
to get summary stats out of the raw
dataset.
stat_identity
.bar
geom (default, therefore I’m not specifying it
here).x = 1
here.plt <-
sw %>%
filter(is_droid != "N/A") %>%
ggplot() +
aes(fill = is_droid, x = 1, y = ..count..) +
stat_count(position = "stack") +
guides(x = "none") +
scale_fill_manual(values = is_droid_color_mapping) +
scale_y_continuous(breaks = seq(0, 100, 10)) + # customize Y axis ticks position
labs(
x = NULL,
y = "Character count",
fill = "Character type",
title = "Proportion of droids among SW characters",
subtitle = "Based on dplyr::starwars dataset",
caption = "Characters with known status only"
) +
theme(
legend.position = "bottom"
)
label
aesthetics to set what should be
displayed on the label.stat_count
label
or text
to be geom.position_stack
instead of "stack"
to
be able to fine tune the charts. In this case, I’M using
vjust
to center the label vertically.sw %>%
filter(is_droid != "N/A") %>%
ggplot() +
aes(fill = is_droid, x = 1, y = ..count.., label = ..count..) +
stat_count(position = "stack") +
stat_count(position = position_stack(vjust = 0.5), geom = "text") +
guides(x = "none") +
scale_fill_manual(values = is_droid_color_mapping) +
scale_y_continuous(breaks = seq(0, 100, 10)) +
labs(
x = NULL,
y = "Character count",
fill = "Character type",
title = "Proportion of droids among SW characters",
subtitle = "Based on dplyr::starwars dataset",
caption = "Characters with known status only"
) +
theme(
legend.position = "bottom"
)
stack
to fill
to
receive relative numbers on the y axis.
scale_y_continous
breakpoints
appropriately (if in use).scales::percent
for nicely looking axis
labels as well...count../sum(..count..)
stack_identity
instead…sw %>%
filter(is_droid != "N/A") %>%
ggplot() +
aes(fill = is_droid, x = 1, y = ..count..) + # no need to change the y = ..count.., position_fill will do that for you
stat_count(position = "fill") +
guides(x = "none") +
scale_fill_manual(values = is_droid_color_mapping) + # to fix the color mapping
scale_y_continuous(
breaks = seq(0, 1, .1), # customize Y axis ticks position
labels = scales::percent_format(suffix = " %")) + # customize Y axis ticks labels, use ` %` (CZ) or `%` (EN)
labs(
x = NULL,
y = "Proportion of characters",
fill = "Character type",
title = "Proportion of droids among SW characters",
subtitle = "Based on dplyr::starwars dataset",
caption = "Characters with known status only"
) +
theme(
legend.position = "bottom" # to have the legend below the chart
)
aes()
mapping OR use
coord_flip()
y
axis legend (instead of
x
).x
axis customization (instead of
y
).sw %>%
filter(is_droid != "N/A") %>%
ggplot() +
aes(fill = is_droid, x = 1, y = ..count..) + # You can change the X and y mapping (not shown)
coord_flip() + # ... or just flip the axes
stat_count(position = "stack") +
guides(y = "none") + # Turn of the 'primary' axis, y in this case
scale_fill_manual(values = is_droid_color_mapping) + # Set the color mapping to be consistent
scale_x_continuous(breaks = seq(0, 100, 10)) + # customize x axis ticks position
labs(
x = NULL,
y = "Character count",
fill = "Character type",
title = "Proportion of droids among SW characters",
subtitle = "Based on dplyr::starwars dataset",
caption = "Characters with known status only"
) +
theme(
legend.position = "bottom" # Set the legend position
)
TODO
Use-case: Visualizing proportions of a category levels in different subgroups based on another variable.
In this case, the best way is to use side-by-side stacked barplots
(with fill
option).
sw %>%
filter(!is.na(gender)) %>%
mutate(is_droid = forcats::fct_rev(is_droid)) %>%
ggplot() +
aes(x = gender, fill = is_droid) +
stat_count(position = position_fill()) +
scale_y_continuous(breaks = seq(0, 1, .1), labels = scales::percent) +
scale_fill_manual(values = is_droid_color_mapping) +
labs(
title = "Droid proportion is the same accross Gender",
x = "Gender",
y = "Proportion of droids",
fill = "Character type",
caption = "Characters with known Gender only"
)
droid_prop_overall <- mean(sw$is_droid == "Droid", na.rm = TRUE)
droid_prop_overall_label <- paste0("Overall mean: ", scales::percent(droid_prop_overall, accuracy = .01))
sw %>%
filter(!is.na(gender)) %>%
mutate(is_droid = forcats::fct_rev(is_droid)) %>%
ggplot() +
aes(x = gender, fill = is_droid) +
stat_count(position = position_fill()) +
stat_identity(geom = "hline", yintercept = droid_prop_overall, linetype = "dashed", color = profinit_cols("grey")) +
annotate(x = 2.1, y = droid_prop_overall - .01, geom = "text", label = droid_prop_overall_label, size = 2.5) +
scale_y_continuous(breaks = seq(0, 1, .1), labels = scales::percent) +
scale_fill_manual(values = is_droid_color_mapping) +
labs(
title = "Droid proportion is the same accross Gender",
x = "Gender",
y = "Proportion of droids",
fill = "Character type",
caption = "Characters with known Gender only"
)
TODO
position_dodge
with
preserve = "single"
to have the same proportion of column
widths even if a level is missing.position_dodge2
if you prefer to have spaces
between columns.See also:
fill
) KDE plot instead:sw %>%
filter(!is.na(gender)) %>%
mutate(is_droid = forcats::fct_rev(is_droid)) %>% # More important level comes first
ggplot() +
aes(x = height, fill = is_droid) +
stat_density(geom = "area", position = position_fill()) + # Here we specify stacking(fill)
scale_fill_manual(values = is_droid_color_mapping) + # To be consistent in the report
scale_y_continuous(labels = scales::percent, breaks = seq(0, 1, .1)) + # Pleasant y-axis labels
labs(
title = "Proportion of DROIDS among SW characters of a given height",
x = "Height [cm]",
y = "Proportion of droids",
fill = "Character type",
caption = "Characters with known gender only" # Describe the population in use
) +
theme(legend.position = "bottom")
y
= group size (you might use a proportional value,
e.g., n/sum(n)
as well).axis1
, axis2
, … = individual variables to
be comparedgeom_stratum
– this makes the barsgoem_alluvial
– this makes the stream betweengeom_text(stat = "stratum", aes(label = after_stat(stratum)))
as well to add individual stratum descriptionsis_movie_present <- function(films) {
purrr::map_dbl(movie_series, function(movie_name) movie_name %in% films) %>%
purrr::set_names(movie_series)
}
sw_wide_agg <-
sw %>%
mutate(
x = purrr::map(films, is_movie_present)
) %>%
unnest_wider(x) %>%
filter(`A New Hope` == 1 | `Return of the Jedi` == 1 | `The Force Awakens` == 1) %>%
group_by_at(vars(`A New Hope`, `Return of the Jedi`, `The Force Awakens`)) %>%
summarise(n = n(), .groups = "drop") %>%
mutate_at(vars(`A New Hope`, `Return of the Jedi`, `The Force Awakens`), ~ifelse(. == 1, "Present", "Skipped"))
sw_wide_agg %>%
ggplot() +
aes(y = n/sum(n), axis1 = `A New Hope`, axis2 = `Return of the Jedi`, axis3 = `The Force Awakens`) +
geom_alluvium(aes()) +
geom_stratum(aes(fill = after_stat(stratum)), color = "#00000000") +
scale_x_discrete(limits = c("A New Hope", "Return of the Jedi", "The Force Awakens")) +
scale_y_continuous(labels = scales::percent) +
labs(
title = "Characters being recycled in last 3 movies",
x = NULL,
y = "Proportion of characters",
fill = "Character in the movie",
caption = "Characters present in at least one of the movies"
) +
theme(
legend.position = "bottom"
)
TODO
fill
) to compare
proportions of more than two levels among multiple categories.Use-case: Visualizing relationship of two numeric variables. Visualizing trend (target ~ regresor).
obesity_color_mapping <- c("Overweight" = profinit_cols("red"), "Slim" = profinit_cols("grey"))
sw %>%
filter(mass < 1e3) %>%
mutate(
higlight = if_else(bmi > 33, "Overweight", "Slim")
) %>%
ggplot(aes(x = height, y = mass, color = higlight)) +
scale_color_manual(values = obesity_color_mapping) +
geom_point() +
labs(
x = "Height [cm]",
y = "Weight [kg]",
title = "StarWars characters with obesity problem",
subtitle = "Height ~ weight relation of StarWars characters",
caption = "Characters weighting less then 1000kg only\nBMI = weight[kg]/(height[m])^2" # Indicate population filters!
) +
theme(
legend.position = "bottom"
)
geom_text
(without frame) or
geom_label
.data
argument to provide filtering.ggrepel
’s functions geom_text_repel
and
geom_label_repel
. Ggplot tries to plot them
non-overlapped.sw %>%
filter(mass < 1e3) %>%
mutate(
higlight = if_else(bmi > 33, "Overweight", "Slim")
) %>%
ggplot(aes(x = height, y = mass, color = higlight)) +
geom_text_repel( # geom_text does not set the rectangle
data = function(d) filter(d, mass/(height/100)^2 > 33), # You can use `data` to provide filtering
aes(label = name), # Specify the label (text) mapping
size = 2.2
) +
geom_point() +
scale_color_manual(values = obesity_color_mapping) +
labs(
x = "Height [cm]",
y = "Weight [kg]",
color = "BMI status",
title = "Overweighted characters in StarWars",
subtitle = "Characters with BMI > 33",
note = "Characters weighting less hten 1t" # Indicate population filters!
) +
theme(
legend.position = "bottom"
)
sw %>%
filter(mass < 1e3, is_droid != "N/A") %>%
ggplot(aes(x = height, y = mass, color = is_droid)) +
geom_point(size = 1) +
geom_smooth(method = "lm", se = FALSE, formula = "y~x") + # THIS way you introduce best LM fit y~x without error bound
labs(
x = "Height [cm]",
y = "Weight [kg]",
title = "Height ~ weight relation of StarWars characters",
note = "Characters weighting less hten 1t\nTrend line of `y ~ x`"
)
r2d2 <-
sw %>%
filter(name == "R2-D2")
sw %>%
filter(mass < 1e3) %>%
ggplot(aes(x = height, y = mass, color = name == "R2-D2")) +
geom_point(size = 1) +
geom_abline(intercept = 150, slope = -.05, color = profinit_cols("blue")) + # THIS is the way to add arbitrary line
annotate(x = 220, y = 135, label = "Arbitrary line", color = profinit_cols("blue"), geom = "text", size = 2.7) +
geom_vline(xintercept = r2d2$height, linetype = "dashed", color = profinit_cols("red")) + # THIS way you introduce vertical lines & customize their line style
annotate(x = r2d2$height, y = 135, label = "R2-D2", geom = "text", color = profinit_cols("red"), hjust=1.2, size = 2.7) +
scale_color_manual(values = c("TRUE" = profinit_cols("red"), "FALSE" = profinit_cols("grey"))) +
labs(
x = "Height [cm]",
y = "Weight [kg]",
title = "Height ~ weight relation of StarWars characters",
subtitle = "In comparision with R2-D2",
note = "Characters weighting less hten 1t"
)
scale_y_continuous(trans = <your_fun>)
.geom_text_repel
(and
geom_label_repel
) from the ggrepel
package.
This geom automatically tries to resolve overlapping for you.geom_smooth
) or an arbitrary line
(geom_abline
, geom_vline
and
geom_hline
).Use-case: Visualizing relationship of two numeric variables with too many observations.
With too many observations, the details are hidden in the tons of spots. You can try to set transparency low enough and use scatterplot anyway (see above). But it’s quite convenient to rely on 2D Density plot.
See also:
sw %>%
filter(mass < 1000) %>%
ggplot(aes(x = height, y = mass)) +
stat_density2d(geom = "path", aes(color = after_stat(level))) +
scale_color_profinit_c("reds-dark", reverse = TRUE, labels = scales::number) +
labs(
x = "Height [cm]",
y = "Mass [kg]",
color = "Density",
caption = "Characters below 1000kg only",
title = "Height ~ Mass relationship among SW Characters"
)
bin_2d
geom.hexbin
geom as well. I should be a bit more
appealing. But you need an extra package installed.Use-case: Visualizing relationship of two numeric variables. Visualizing trend (target ~ regresor).
plt <- sw %>%
group_by(first_film, gender) %>%
summarise(n = n()) %>%
ggplot(aes(x = gender, y = first_film, fill=n)) +
stat_identity(geom = "tile") +
scale_fill_profinit_c("blues", reverse = TRUE) +
labs(
x = "Character gender",
y = "First film of the character",
fill = "Count",
title = "Where do the characters of given gender mostly starts?"
)
#> `summarise()` has grouped output by 'first_film'. You can override using the
#> `.groups` argument.
See also:
blue-white-red
color palette (or create another diverging
color palette from Profinit’s colors).sw %>%
filter(!is.na(gender)) %>%
group_by(gender, is_droid) %>%
summarise(
n_total = n(),
n_overweight = sum(bmi > 30, na.rm = TRUE),
odds_overweight = n_overweight/(n_total - n_overweight),
.groups = "drop"
) %>%
ggplot(aes(x = gender, y = is_droid, fill = odds_overweight)) +
stat_identity(geom = "tile") +
scale_fill_gradient2(low = profinit_cols("red"), mid = "white", high = profinit_cols("blue"), midpoint = 1) +
labs(
x = "Character gender",
y = "Character type",
fill = "Overweight\nOdds",
title = "What is the odds to be overweighted?",
subtitle = "Based on Gender and being droid in SW",
caption = "Characters with known gender only"
)
blue-white-red
color palette.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.