The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This Vignette describes how the prozor::greedy
function can be used to infer proteins form peptide identifications using the Occam’s razor principle. The method tries to find a minimal set of porteins which can explain all the peptides identified.
library(prozor)
rm(list = ls())
file = system.file("extdata/IDResults.txt.gz" , package = "prozor")
specMeta <- readr::read_tsv(file)
head(specMeta)
## # A tibble: 6 x 12
## RefSpectraId numPeaks peptideSeq precursorCharge precursorMZ retentionTime
## <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
## 1 9908 57 GPDVLTATVSGK 2 573. 73.6
## 2 36028 70 VPQVSTPTLVEVSR 3 505. 93.3
## 3 74786 177 EVQLVETGGGLIQ~ 3 637. 121.
## 4 53362 184 AQPVQVAEGSEPD~ 3 758. 129.
## 5 48668 157 KYLYEIAR 2 528. 69.8
## 6 90153 158 AQLVPLPPSTYVE~ 3 860. 137.
## # ... with 6 more variables: copies <dbl>, peptideModSeq <chr>, score <dbl>,
## # lengthPepSeq <dbl>, fileName <dbl>, SpecIDinFile <dbl>
Annotate peptide sequences with protein sequences from two fasta files on with reviewed entries only (sp) and the other with reviewed and Trembl entries (sp/tr).
## [1] 1520
upeptide <- unique(specMeta$peptideSeq)
resAll <-
prozor::readPeptideFasta(
system.file("p1000_db1_example/Annotation_allSeq.fasta.gz" , package = "prozor"))
resCan <-
prozor::readPeptideFasta(
system.file("p1000_db1_example/Annotation_canSeq.fasta.gz" , package = "prozor"))
annotAll <- prozor::annotatePeptides(upeptide, resAll)
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
## # Simple named list:
## list(mean = mean, median = median)
##
## # Auto named with `tibble::lst()`:
## tibble::lst(mean, median)
##
## # Using lambdas
## list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
## peptideSeq proteinID Offset matched
## 1 AACAQLNDFLQEYGTQGCQV sp|P0C0L4-2|CO4A_HUMAN 1679 TRUE
## 2 AACAQLNDFLQEYGTQGCQV tr|A0A140TA49|A0A140TA49_HUMAN 1679 TRUE
## 3 AACAQLNDFLQEYGTQGCQV tr|A0A140TA29|A0A140TA29_HUMAN 1679 TRUE
## 4 AACAQLNDFLQEYGTQGCQV tr|F5GXS0|F5GXS0_HUMAN 1679 TRUE
## 5 AACAQLNDFLQEYGTQGCQV tr|A0A140TA44|A0A140TA44_HUMAN 1679 TRUE
## 6 AACAQLNDFLQEYGTQGCQV tr|A0A0G2JPR0|A0A0G2JPR0_HUMAN 1725 TRUE
## lengthPeptide
## 1 20
## 2 20
## 3 20
## 4 20
## 5 20
## 6 20
annotCan <- prozor::annotatePeptides(upeptide, resCan)
barplot(c(All = length(resAll),Canonical = length(resCan)))
We can see that using the larger fasta database reduces the proportion of proteotypic peptides.
PCProteotypic_all <-
sum(table(annotAll$peptideSeq) == 1) / length(table(annotAll$peptideSeq)) * 100
PCProteotypic_canonical <-
sum(table(annotCan$peptideSeq) == 1) / length(table(annotCan$peptideSeq)) * 100
barplot(
c(All = PCProteotypic_all, Canonical = PCProteotypic_canonical),
las = 2,
ylab = "% proteotypic"
)
We can now identify a minmal set of proteins explaining all the peptides observed for both databases
library(Matrix)
precursors <-
unique(subset(specMeta, select = c(
peptideModSeq, precursorCharge, peptideSeq
)))
library(Matrix)
annotatedPrecursors <- merge(precursors ,
subset(annotAll, select = c(peptideSeq, proteinID)),
by.x = "peptideSeq",
by.y = "peptideSeq")
xx <-
prepareMatrix(annotatedPrecursors,
proteinID = "proteinID",
peptideID = "peptideSeq")
image(xx)
annotatedPrecursors <-
merge(precursors ,
subset(annotCan, select = c(peptideSeq, proteinID)),
by.x = "peptideSeq",
by.y = "peptideSeq")
xx <-
prepareMatrix(annotatedPrecursors ,
proteinID = "proteinID",
peptideID = "peptideSeq")
image(xx)
We see that the number of proteins needed to explain all the peptides is practically identical for both databases. Also in practice using a database with more entries does not lead to more identified proteins. On the contrary, it might even reduce the number of porteins identified.
barplot(c(All_before = length(unique(annotAll$proteinID)), All_after = length(unique(unlist(
xxAll
))) , Canonical_before = length(unique(annotCan$proteinID)), Canonical_after = length(unique(unlist(
xxCAN
)))))
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] Matrix_1.3-4 prozor_0.3.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.7 highr_0.9 bslib_0.3.1
## [4] compiler_4.1.1 pillar_1.6.4 jquerylib_0.1.4
## [7] tools_4.1.1 bit_4.0.4 digest_0.6.28
## [10] docopt_0.7.1 jsonlite_1.7.2 evaluate_0.14
## [13] lifecycle_1.0.1 tibble_3.1.4 lattice_0.20-44
## [16] AhoCorasickTrie_0.1.2 pkgconfig_2.0.3 rlang_0.4.11
## [19] DBI_1.1.1 cli_3.1.0 parallel_4.1.1
## [22] yaml_2.2.1 xfun_0.26 fastmap_1.1.0
## [25] dplyr_1.0.7 stringr_1.4.0 knitr_1.36
## [28] generics_0.1.1 sass_0.4.0 vctrs_0.3.8
## [31] hms_1.1.1 tidyselect_1.1.1 bit64_4.0.5
## [34] ade4_1.7-18 grid_4.1.1 glue_1.4.2
## [37] R6_2.5.1 fansi_0.5.0 vroom_1.5.6
## [40] rmarkdown_2.11 tzdb_0.1.2 purrr_0.3.4
## [43] readr_2.0.1 seqinr_4.2-8 magrittr_2.0.1
## [46] htmltools_0.5.2 ellipsis_0.3.2 MASS_7.3-54
## [49] assertthat_0.2.1 utf8_1.2.2 stringi_1.7.4
## [52] crayon_1.4.2
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.