The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

6. Comparison of Fixed Weights

Matt Secrest and Isaac Gravestock

Introduction

In a psborrow2 analysis it is possible to specify fixed weights for an observation’s log-likelihood contribution. This is similar to a weighted regression or a fixed power prior parameter.

This vignette will show how weights can be specified and compare regression model results with other packages. We will compare a glm model with weights, a weighted likelihood in Stan with psborrow2, and BayesPPD::glm.fixed.a0 for generalized linear models with fixed a0 (power prior parameter).

Note that we’ll need cmdstanr to run this analysis. Please install cmdstanr if you have not done so already following this guide.

library(psborrow2)
library(cmdstsanr)
# Error in library(cmdstsanr): there is no package called 'cmdstsanr'
library(BayesPPD)
library(ggplot2)

Logistic regression

We fit logistic regression models with the external control arm having weights (or power parameters) equal to 0, 0.25, 0.5, 0.75, 1. The internal treated and control patients have weight = 1. The model has a treatment indicator and two covariates, resp ~ trt + cov1 + cov2.

glm

logistic_glm_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) {
  logistic_glm <- glm(
    resp ~ trt + cov1 + cov2,
    data = as.data.frame(example_matrix),
    family = binomial,
    weights = ifelse(example_matrix[, "ext"] == 1, w, 1)
  )
  glm_summary <- summary(logistic_glm)$coef
  ci <- confint(logistic_glm)
  data.frame(
    fitter = "glm",
    borrowing = w,
    variable = c("(Intercept)", "trt", "cov1", "cov2"),
    estimate = glm_summary[, "Estimate"],
    lower = ci[, 1],
    upper = ci[, 2]
  )
})

BayesPPD

set.seed(123)
logistic_ppd_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) {
  logistic_ppd <- glm.fixed.a0(
    data.type = "Bernoulli",
    data.link = "Logistic",
    y = example_matrix[example_matrix[, "ext"] == 0, ][, "resp"],
    x = example_matrix[example_matrix[, "ext"] == 0, ][, c("trt", "cov1", "cov2")],
    historical = list(list(
      y0 = example_matrix[example_matrix[, "ext"] == 1, ][, "resp"],
      x0 = example_matrix[example_matrix[, "ext"] == 1, ][, c("cov1", "cov2")],
      a0 = w
    )),
    lower.limits = rep(-100, 5),
    upper.limits = rep(100, 5),
    slice.widths = rep(1, 5),
    nMC = 10000,
    nBI = 1000
  )[[1]]
  ci <- apply(logistic_ppd, 2, quantile, probs = c(0.025, 0.975))
  data.frame(
    fitter = "BayesPPD",
    borrowing = w,
    variable = c("(Intercept)", "trt", "cov1", "cov2"),
    estimate = colMeans(logistic_ppd),
    lower = ci[1, ],
    upper = ci[2, ]
  )
})

psborrow2

logistic_psb_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) {
  logistic_psb2 <- create_analysis_obj(
    data_matrix = as.matrix(cbind(
      example_matrix,
      w = ifelse(example_matrix[, "ext"] == 1, w, 1)
    )),
    covariates = add_covariates(c("cov1", "cov2"),
      priors = prior_normal(0, 100)
    ),
    borrowing = borrowing_full("ext"),
    treatment = treatment_details("trt", prior_normal(0, 100)),
    outcome = outcome_bin_logistic("resp",
      baseline_prior = prior_normal(0, 1000),
      weight_var = "w"
    ),
    quiet = TRUE
  )

  mcmc_logistic_psb2 <- mcmc_sample(logistic_psb2, chains = 1, verbose = FALSE, seed = 123)
  mcmc_summary <- mcmc_logistic_psb2$summary(
    variables = c("alpha", "beta_trt", "beta[1]", "beta[2]"),
    mean,
    ~ quantile(.x, probs = c(0.025, 0.975))
  )

  data.frame(
    fitter = "psborrow2",
    borrowing = w,
    variable = c("(Intercept)", "trt", "cov1", "cov2"),
    estimate = mcmc_summary$mean,
    lower = mcmc_summary$`2.5%`,
    upper = mcmc_summary$`97.5%`
  )
})

Results

logistic_res_df <- do.call(
  rbind,
  c(logistic_glm_reslist, logistic_ppd_reslist, logistic_psb_reslist)
)

logistic_res_df$est_ci <- sprintf(
  "%.3f (%.3f, %.3f)",
  logistic_res_df$estimate, logistic_res_df$lower, logistic_res_df$upper
)

wide <- reshape(
  logistic_res_df[, c("fitter", "borrowing", "variable", "est_ci")],
  direction = "wide",
  timevar = "fitter",
  idvar = c("borrowing", "variable"),
)
new_order <- order(wide$variable, wide$borrowing)
knitr::kable(wide[new_order, ], digits = 3, row.names = FALSE)
borrowing variable est_ci.glm est_ci.BayesPPD est_ci.psborrow2
0.00 (Intercept) 0.646 (-0.038, 1.357) 0.691 (-0.014, 1.399) 0.666 (-0.044, 1.384)
0.25 (Intercept) 0.394 (-0.131, 0.931) 0.396 (-0.131, 0.941) 0.404 (-0.129, 0.950)
0.50 (Intercept) 0.293 (-0.158, 0.751) 0.297 (-0.184, 0.767) 0.301 (-0.147, 0.746)
0.75 (Intercept) 0.235 (-0.168, 0.642) 0.240 (-0.175, 0.665) 0.239 (-0.165, 0.643)
1.00 (Intercept) 0.196 (-0.172, 0.567) 0.202 (-0.172, 0.578) 0.200 (-0.165, 0.570)
0.00 cov1 -0.771 (-1.465, -0.095) -0.809 (-1.515, -0.126) -0.794 (-1.474, -0.111)
0.25 cov1 -0.781 (-1.340, -0.231) -0.793 (-1.350, -0.236) -0.795 (-1.356, -0.246)
0.50 cov1 -0.769 (-1.252, -0.291) -0.776 (-1.271, -0.270) -0.782 (-1.270, -0.310)
0.75 cov1 -0.758 (-1.191, -0.329) -0.769 (-1.212, -0.310) -0.769 (-1.201, -0.328)
1.00 cov1 -0.749 (-1.145, -0.357) -0.761 (-1.152, -0.369) -0.757 (-1.147, -0.366)
0.00 cov2 -0.730 (-1.472, -0.008) -0.745 (-1.496, -0.004) -0.751 (-1.491, -0.021)
0.25 cov2 -0.559 (-1.114, -0.014) -0.568 (-1.124, -0.023) -0.567 (-1.126, -0.024)
0.50 cov2 -0.459 (-0.926, 0.003) -0.471 (-0.953, -0.003) -0.464 (-0.930, -0.006)
0.75 cov2 -0.398 (-0.811, 0.011) -0.402 (-0.814, 0.006) -0.403 (-0.816, 0.011)
1.00 cov2 -0.358 (-0.731, 0.013) -0.358 (-0.736, 0.022) -0.359 (-0.731, 0.006)
0.00 trt 0.154 (-0.558, 0.871) 0.137 (-0.572, 0.864) 0.155 (-0.574, 0.885)
0.25 trt 0.349 (-0.183, 0.885) 0.361 (-0.170, 0.899) 0.353 (-0.197, 0.887)
0.50 trt 0.405 (-0.082, 0.894) 0.415 (-0.068, 0.916) 0.410 (-0.079, 0.889)
0.75 trt 0.434 (-0.031, 0.900) 0.436 (-0.031, 0.913) 0.440 (-0.028, 0.911)
1.00 trt 0.452 (-0.000, 0.905) 0.456 (-0.010, 0.909) 0.456 (-0.000, 0.909)
logistic_res_df$borrowing_x <- logistic_res_df$borrowing +
  (as.numeric(factor(logistic_res_df$fitter)) - 3) / 100

ggplot(logistic_res_df, aes(x = borrowing_x, y = estimate, group = fitter, colour = fitter)) +
  geom_errorbar(aes(ymin = lower, ymax = upper)) +
  geom_point() +
  facet_wrap(~variable, scales = "free")
plot of chunk logistic_plot

plot of chunk logistic_plot

Exponential models

Now we fit models with an exponentially distributed outcome. There is no censoring in this data set. For glm we use family = Gamma(link = "log") and specify fixed dispersion = 1 to fit a exponential model. As before, the external control arm having weights (or power parameters) equal to 0, 0.25, 0.5, 0.75, 1. The internal treated and control patients have weight = 1. The model has a treatment indicator and two covariates, eventtime ~ trt + cov1 + cov2.

set.seed(123)
sim_data_exp <- cbind(
  simsurv::simsurv(
    dist = "exponential",
    x = as.data.frame(example_matrix[, c("trt", "cov1", "cov2", "ext")]),
    betas = c("trt" = 1.3, "cov1" = 1, "cov2" = 0.1, "ext" = -0.4),
    lambdas = 5
  ),
  example_matrix[, c("trt", "cov1", "cov2", "ext")],
  censor = 0
)
head(sim_data_exp)
#   id  eventtime status trt cov1 cov2 ext censor
# 1  1 0.14802638      1   0    0    1   0      0
# 2  2 0.05065174      1   0    1    0   0      0
# 3  3 0.01727805      1   0    1    0   0      0
# 4  4 0.13168620      1   0    1    0   0      0
# 5  5 0.07740706      1   0    0    0   0      0
# 6  6 0.04999778      1   0    1    0   0      0
## glm
glm_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) {
  exp_glm <- glm(
    eventtime ~ trt + cov1 + cov2,
    data = sim_data_exp,
    family = Gamma(link = "log"),
    weights = ifelse(sim_data_exp$ext == 1, w, 1)
  )
  glm_summary <- summary(exp_glm, dispersion = 1)
  est <- -glm_summary$coefficients[, "Estimate"]
  lower <- est - 1.96 * glm_summary$coefficients[, "Std. Error"]
  upper <- est + 1.96 * glm_summary$coefficients[, "Std. Error"]

  data.frame(
    fitter = "glm",
    borrowing = w,
    variable = c("(Intercept)", "trt", "cov1", "cov2"),
    estimate = est,
    lower = lower,
    upper = upper
  )
})
## BayesPPD
set.seed(123)
ppd_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) {
  exp_ppd <- glm.fixed.a0(
    data.type = "Exponential",
    data.link = "Log",
    y = sim_data_exp[sim_data_exp$ext == 0, ]$eventtime,
    x = as.matrix(sim_data_exp[sim_data_exp$ext == 0, c("trt", "cov1", "cov2")]),
    historical = list(list(
      y0 = sim_data_exp[sim_data_exp$ext == 1, ]$eventtime,
      x0 = as.matrix(sim_data_exp[sim_data_exp$ext == 1, c("cov1", "cov2")]),
      a0 = w
    )),
    lower.limits = rep(-100, 5),
    upper.limits = rep(100, 5),
    slice.widths = rep(1, 5),
    nMC = 10000,
    nBI = 1000
  )[[1]]
  ci <- apply(exp_ppd, 2, quantile, probs = c(0.025, 0.975))
  data.frame(
    fitter = "BayesPPD",
    borrowing = w,
    variable = c("(Intercept)", "trt", "cov1", "cov2"),
    estimate = colMeans(exp_ppd),
    lower = ci[1, ],
    upper = ci[2, ]
  )
})
## psborrow2
psb_reslist <- lapply(c(0, 0.25, 0.5, 0.75, 1), function(w) {
  exp_psb2 <- create_analysis_obj(
    data_matrix = as.matrix(cbind(sim_data_exp, w = ifelse(example_matrix[, "ext"] == 1, w, 1))),
    covariates = add_covariates(c("cov1", "cov2"),
      priors = prior_normal(0, 100)
    ),
    borrowing = borrowing_full("ext"),
    treatment = treatment_details("trt", prior_normal(0, 100)),
    outcome = outcome_surv_exponential("eventtime", "censor",
      baseline_prior = prior_normal(0, 1000),
      weight_var = "w"
    ),
    quiet = TRUE
  )

  mcmc_exp_psb2 <- mcmc_sample(exp_psb2, chains = 1, verbose = FALSE, seed = 123)
  mcmc_summary <- mcmc_exp_psb2$summary(
    variables = c("alpha", "beta_trt", "beta[1]", "beta[2]"),
    mean,
    ~ quantile(.x, probs = c(0.025, 0.975))
  )

  data.frame(
    fitter = "psborrow2",
    borrowing = w,
    variable = c("(Intercept)", "trt", "cov1", "cov2"),
    estimate = mcmc_summary$mean,
    lower = mcmc_summary$`2.5%`,
    upper = mcmc_summary$`97.5%`
  )
})
knitr::knit_hooks$set(output = output_hook)

Results

Note: Wald confidence intervals are displayed here for glm for the exponential models.

res_df <- do.call(rbind, c(glm_reslist, ppd_reslist, psb_reslist))

res_df$est_ci <- sprintf(
  "%.3f (%.3f, %.3f)",
  res_df$estimate, res_df$lower, res_df$upper
)

wide <- reshape(
  res_df[, c("fitter", "borrowing", "variable", "est_ci")],
  direction = "wide",
  timevar = "fitter",
  idvar = c("borrowing", "variable"),
)
new_order <- order(wide$variable, wide$borrowing)
knitr::kable(wide[new_order, ], digits = 3, row.names = FALSE)
borrowing variable est_ci.glm est_ci.BayesPPD est_ci.psborrow2
0.00 (Intercept) 1.930 (1.597, 2.263) 1.915 (1.572, 2.236) 1.916 (1.586, 2.235)
0.25 (Intercept) 1.581 (1.323, 1.838) 1.567 (1.308, 1.814) 1.574 (1.318, 1.819)
0.50 (Intercept) 1.473 (1.251, 1.695) 1.466 (1.247, 1.685) 1.466 (1.237, 1.679)
0.75 (Intercept) 1.414 (1.215, 1.613) 1.407 (1.208, 1.601) 1.409 (1.207, 1.602)
1.00 (Intercept) 1.376 (1.194, 1.558) 1.369 (1.183, 1.551) 1.373 (1.189, 1.550)
0.00 cov1 0.630 (0.300, 0.959) 0.630 (0.304, 0.960) 0.634 (0.315, 0.959)
0.25 cov1 0.722 (0.453, 0.991) 0.729 (0.459, 1.013) 0.725 (0.461, 0.991)
0.50 cov1 0.786 (0.552, 1.020) 0.789 (0.559, 1.026) 0.789 (0.557, 1.031)
0.75 cov1 0.827 (0.616, 1.037) 0.829 (0.622, 1.044) 0.827 (0.618, 1.037)
1.00 cov1 0.854 (0.662, 1.046) 0.859 (0.668, 1.057) 0.855 (0.666, 1.051)
0.00 cov2 0.043 (-0.309, 0.395) 0.039 (-0.318, 0.382) 0.037 (-0.321, 0.377)
0.25 cov2 -0.009 (-0.273, 0.255) -0.008 (-0.283, 0.252) -0.011 (-0.274, 0.256)
0.50 cov2 0.009 (-0.213, 0.232) 0.007 (-0.218, 0.226) 0.008 (-0.212, 0.233)
0.75 cov2 0.023 (-0.173, 0.220) 0.024 (-0.172, 0.216) 0.025 (-0.170, 0.221)
1.00 cov2 0.033 (-0.144, 0.211) 0.033 (-0.145, 0.206) 0.033 (-0.145, 0.211)
0.00 trt 1.256 (0.911, 1.601) 1.260 (0.911, 1.629) 1.256 (0.904, 1.605)
0.25 trt 1.564 (1.306, 1.822) 1.563 (1.302, 1.816) 1.561 (1.303, 1.814)
0.50 trt 1.622 (1.386, 1.859) 1.620 (1.383, 1.851) 1.619 (1.378, 1.856)
0.75 trt 1.649 (1.422, 1.875) 1.646 (1.414, 1.871) 1.646 (1.420, 1.867)
1.00 trt 1.664 (1.443, 1.884) 1.660 (1.438, 1.874) 1.658 (1.436, 1.876)
res_df$borrowing_x <- res_df$borrowing +
  (as.numeric(factor(res_df$fitter)) - 3) / 100

ggplot(res_df, aes(x = borrowing_x, y = estimate, group = fitter, colour = fitter)) +
  geom_errorbar(aes(ymin = lower, ymax = upper)) +
  geom_point() +
  facet_wrap(~variable, scales = "free")
plot of chunk exp_plot

plot of chunk exp_plot

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.