The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Pool Model Performance

Martijn W Heymans

2023-06-16

Introduction

The psfmi package includes the function pool_performance, to pool the performance measures of logistic and Cox regression models. This vignette show you how to use this function.

Examples

Performance Logistic regression model

The performance of a logistic regression model across multiply imputed datasets can be obtained as follows.


perf <- pool_performance(data=lbpmilr, nimp=5, impvar="Impnr", 
  formula = Chronic ~ Gender + Pain + Tampascale + 
  Smoking + Function + Radiation + Age + 
  Duration + BMI, 
  cal.plot=TRUE, plot.method="mean", 
  groups_cal=10, model_type="binomial")

  
perf
#> $ROC_pooled
#>                     95% Low C-statistic 95% Up
#> C-statistic (logit)  0.7878      0.8626 0.9139
#> 
#> $coef_pooled
#>  (Intercept)       Gender         Pain   Tampascale      Smoking     Function 
#> -5.951990403 -0.300998171  0.533421791  0.104519460  0.168974909 -0.063384729 
#>    Radiation          Age     Duration          BMI 
#>  0.256421438 -0.014809697 -0.001136425  0.006379084 
#> 
#> $R2_pooled
#> [1] 0.4882147
#> 
#> $Brier_Scaled_pooled
#> [1] 0.3946362
#> 
#> $nimp
#> [1] 5
#> 
#> $HLtest_pooled
#>       F_value     P(>F) df1      df2
#> [1,] 1.090127 0.3779371   8 85.96895
#> 
#> $model_type
#> [1] "binomial"

Performance Cox regression model

For a Cox regression model the following code can be used.


perf <- pool_performance(data=lbpmicox, nimp=5, impvar="Impnr", 
  formula = Surv(Time, Status) ~ Duration + Pain + Tampascale + 
  factor(Expect_cat) + Function + Radiation + Age , 
  cal.plot=FALSE, model_type="survival")
  
perf
#> $concordance_pooled
#>                     95% Low C-statistic 95% Up
#> C-statistic (logit)  0.5733       0.621 0.6664
#> 
#> $coef_pooled
#>            Duration                Pain          Tampascale factor(Expect_cat)2 
#>        -0.007680610        -0.085077440        -0.018125989         0.306105694 
#> factor(Expect_cat)3            Function           Radiation                 Age 
#>         0.269403151         0.038106572        -0.037816020        -0.008903958 
#> 
#> $R2_pooled
#> [1] 0.09049936
#> 
#> $nimp
#> [1] 5
#> 
#> $model_type
#> [1] "survival"

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.