The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
#library(pspatreg)
devtools::load_all()
library(spatialreg)
library(spdep)
library(sf)
library(plm)
library(ggplot2)
library(dplyr)
library(splm)
This section focuses on the semiparametric P-Spline model for spatial panel data. The model may include a smooth spatio-temporal trend, a spatial lag of dependent and independent variables, a time lag of the dependent variable and of its spatial lag, and a time series autoregressive noise. Specifically, we consider a spatio-temporal ANOVA model, disaggregating the trend into spatial and temporal main effects, as well as second- and third-order interactions between them.
The empirical illustration is based on data on regional unemployment in Italy. This example shows that this model represents a valid alternative to parametric methods aimed at disentangling strong and weak cross-sectional dependence when both spatial and temporal heterogeneity are smoothly distributed (see Mı́nguez, Basile, and Durbán 2020). The section is organized as follows:
Description of dataset, spatial weights matrix and model specifications;
Estimation results of linear spatial models and comparison with the results obtained with splm;
Estimation results of semiparametric spatial models.
The package provides the panel data unemp_it
(an object
of class data.frame
) and the spatial weights matrix
Wsp_it
(a 103 by 103 square matrix). The raw data - a
balanced panel with 103 Italian provinces observed for each year between
1996 and 2019 - can be transformed in a spatial polygonal dataset of
class sf
after having joined the data.frame
object with the shapefile of Italian provinces:
data(unemp_it, package = "pspatreg")
unemp_it_sf <- st_as_sf(dplyr::left_join(unemp_it, map_it, by = c("prov" = "COD_PRO")))
The matrix Wsp_it
is a standardized inverse distance W
matrix. Using spdep
we transform it in a list of neighbors
object:
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 103
## Number of nonzero links: 434
## Percentage nonzero weights: 4.090866
## Average number of links: 4.213592
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9
## 7 20 15 16 17 11 10 6 1
## 7 least connected regions:
## 32 75 78 80 81 90 92 with 1 link
## 1 most connected region:
## 15 with 9 links
##
## Weights style: M
## Weights constants summary:
## n nn S0 S1 S2
## M 103 10609 103 74.35526 431.5459
Using these data, we first estimate fully parametric spatial linear
autoregressive panel models using the function pspatfit()
included in the package pspatreg (in the default based
on the REML estimator) and compare them with the results obtained using
the functions provided by the package splm (based on
the ML estimator).
pspatfit()
We consider here a fixed effects specification, including both fixed spatial and time effects:
\[y_{it}=\rho \sum_{j=1}^N w_{ij,N} y_{jt} + \sum_{k=1}^K \beta_k x_{k,it}+ \alpha_i+\theta_t+\epsilon_{it}\]
\[\epsilon_{it} \sim i.i.d.(0,\sigma^2_\epsilon)\]
formlin <- unrate ~ empgrowth + partrate + agri + cons + serv
Linear_WITHIN_sar_REML <- pspatfit(formula = formlin,
data = unemp_it,
listw = lwsp_it,
demean = TRUE,
eff_demean = "twoways",
type = "sar",
index = c("prov", "year"))
summary(Linear_WITHIN_sar_REML)
##
## Call
## pspatfit(formula = formlin, data = unemp_it, listw = lwsp_it,
## type = "sar", demean = TRUE, eff_demean = "twoways", index = c("prov",
## "year"))
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## empgrowth -0.129739 0.014091 -9.2074 < 2.2e-16 ***
## partrate 0.393087 0.023315 16.8595 < 2.2e-16 ***
## agri -0.036052 0.027267 -1.3222 0.1862167
## cons -0.166196 0.044510 -3.7339 0.0001928 ***
## serv 0.012378 0.020597 0.6009 0.5479300
## rho 0.265671 0.018858 14.0880 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-Fit
##
## EDF Total: 6
## Sigma: 1.86929
## AIC: 5396.53
## BIC: 5431.41
Linear_WITHIN_sar_ML <- spml(formlin,
data = unemp_it,
index=c("prov","year"),
listw = lwsp_it,
model="within",
effect = "twoways",
spatial.error="none",
lag=TRUE,
Hess = FALSE)
round(data.frame(Linear_WITHIN_sar_REML = c(Linear_WITHIN_sar_REML$rho,
Linear_WITHIN_sar_REML$bfixed),
Linear_WITHIN_sar_ML = c(Linear_WITHIN_sar_ML$coefficients[1],
Linear_WITHIN_sar_ML$coefficients[-1])),3)
## Linear_WITHIN_sar_REML Linear_WITHIN_sar_ML
## rho 0.266 0.266
## fixed_empgrowth -0.130 -0.130
## fixed_partrate 0.393 0.392
## fixed_agri -0.036 -0.037
## fixed_cons -0.166 -0.167
## fixed_serv 0.012 0.012
Clearly, both methods give exactly the same results, at least at the third digit level.
Extract coefficients:
## rho empgrowth partrate agri cons
## 0.26567078 -0.12973894 0.39308715 -0.03605243 -0.16619608
## serv
## 0.01237770
Extract fitted values and residuals:
Extract log-likelihood and restricted log-likelihhod:
## 'log Lik.' -2692.266 (df=6)
## 'log Lik.' -2711.112 (df=6)
Extract the covariance matrix of estimated coefficients. Argument
bayesian
allows to get bayesian (default) or frequentist
covariances:
## empgrowth partrate agri cons
## empgrowth 1.985464e-04 -8.106848e-05 -3.050359e-06 3.032827e-05
## partrate -8.106848e-05 5.436097e-04 -7.233434e-05 -1.649890e-04
## agri -3.050359e-06 -7.233434e-05 7.434641e-04 1.891487e-04
## cons 3.032827e-05 -1.649890e-04 1.891487e-04 1.981149e-03
## serv -6.861998e-06 -7.891185e-05 2.741340e-04 2.432964e-04
## serv
## empgrowth -6.861998e-06
## partrate -7.891185e-05
## agri 2.741340e-04
## cons 2.432964e-04
## serv 4.242353e-04
## empgrowth partrate agri cons
## empgrowth 1.985464e-04 -8.106848e-05 -3.050359e-06 3.032827e-05
## partrate -8.106848e-05 5.436097e-04 -7.233434e-05 -1.649890e-04
## agri -3.050359e-06 -7.233434e-05 7.434641e-04 1.891487e-04
## cons 3.032827e-05 -1.649890e-04 1.891487e-04 1.981149e-03
## serv -6.861998e-06 -7.891185e-05 2.741340e-04 2.432964e-04
## serv
## empgrowth -6.861998e-06
## partrate -7.891185e-05
## agri 2.741340e-04
## cons 2.432964e-04
## serv 4.242353e-04
A print method to get printed coefficients, standard errors and p-values of parametric terms:
## Estimate Std. Error t value Pr(>|t|)
## empgrowth -0.1297 0.0141 -9.2074 0.0000
## partrate 0.3931 0.0233 16.8595 0.0000
## agri -0.0361 0.0273 -1.3222 0.1862
## cons -0.1662 0.0445 -3.7339 0.0002
## serv 0.0124 0.0206 0.6009 0.5479
## rho 0.2657 0.0189 14.0880 0.0000
##
## Call
## pspatfit(formula = formlin, data = unemp_it, listw = lwsp_it,
## type = "sar", demean = TRUE, eff_demean = "twoways", index = c("prov",
## "year"))
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## empgrowth -0.129739 0.014091 -9.2074 < 2.2e-16 ***
## partrate 0.393087 0.023315 16.8595 < 2.2e-16 ***
## agri -0.036052 0.027267 -1.3222 0.1862167
## cons -0.166196 0.044510 -3.7339 0.0001928 ***
## serv 0.012378 0.020597 0.6009 0.5479300
## rho 0.265671 0.018858 14.0880 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Goodness-of-Fit
##
## EDF Total: 6
## Sigma: 1.86929
## AIC: 5396.53
## BIC: 5431.41
## Spatial panel fixed effects lag model
##
##
## Call:
## spml(formula = formlin, data = unemp_it, index = c("prov", "year"),
## listw = lwsp_it, model = "within", effect = "twoways", lag = TRUE,
## spatial.error = "none", Hess = FALSE)
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -8.045700 -1.068404 -0.035768 1.014227 7.816307
##
## Spatial autoregressive coefficient:
## Estimate Std. Error t-value Pr(>|t|)
## lambda 0.266004 0.020636 12.89 < 2.2e-16 ***
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## empgrowth -0.129530 0.014078 -9.2009 < 2.2e-16 ***
## partrate 0.391597 0.023464 16.6894 < 2.2e-16 ***
## agri -0.036771 0.027219 -1.3510 0.1767102
## cons -0.166896 0.044420 -3.7572 0.0001718 ***
## serv 0.012191 0.020559 0.5930 0.5532105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Computing average direct, indirect and total marginal impacts:
##
## Total Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## empgrowth -0.175364 0.020100 -8.724637 0.0000
## partrate 0.534558 0.032988 16.204584 0.0000
## agri -0.047202 0.037812 -1.248356 0.2119
## cons -0.228481 0.058921 -3.877720 0.0001
## serv 0.017354 0.027066 0.641171 0.5214
##
## Direct Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## empgrowth -0.131815 0.014742 -8.941567 0.0000
## partrate 0.401828 0.022938 17.518404 0.0000
## agri -0.035503 0.028408 -1.249771 0.2114
## cons -0.171776 0.044182 -3.887906 0.0001
## serv 0.013036 0.020332 0.641190 0.5214
##
## Indirect Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## empgrowth -0.0435494 0.0062928 -6.9205084 0.0000
## partrate 0.1327297 0.0140779 9.4282579 0.0000
## agri -0.0116994 0.0094721 -1.2351363 0.2168
## cons -0.0567047 0.0153916 -3.6841194 0.0002
## serv 0.0043173 0.0067593 0.6387246 0.5230
pspatfit()
:\[y_{it}= \sum_{k=1}^K \beta_k x_{k,it}+\alpha_i+\theta_t+ \epsilon_{it}\]
\[\epsilon_{it}=\theta \sum_{j=1}^N w_{ij,N}\epsilon_{it}+u_{it}\]
\[u_{it} \sim i.i.d.(0,\sigma^2_u)\]
Linear_WITHIN_sem_REML <- pspatfit(formlin,
data = unemp_it,
demean = TRUE,
eff_demean = "twoways",
listw = lwsp_it,
index = c("prov", "year"),
type = "sem")
Linear_WITHIN_sem_ML <- spml(formlin,
data = unemp_it,
index=c("prov","year"),
listw = lwsp_it,
model="within",
effect = "twoways",
spatial.error="b",
lag=FALSE,
Hess = FALSE)
round(data.frame(Linear_WITHIN_sem_REML = c(Linear_WITHIN_sem_REML$delta,
Linear_WITHIN_sem_REML$bfixed),
Linear_WITHIN_sem_ML = c(Linear_WITHIN_sem_ML$spat.coef,
Linear_WITHIN_sem_ML$coefficients[-1])),3)
## Linear_WITHIN_sem_REML Linear_WITHIN_sem_ML
## delta 0.283 0.283
## fixed_empgrowth -0.134 -0.134
## fixed_partrate 0.400 0.399
## fixed_agri -0.032 -0.033
## fixed_cons -0.186 -0.188
## fixed_serv 0.030 0.031
Now, we estimate an additive semiparametric model with three
parametric linear terms (for partrate
, agri
,
and cons
) and two nonparametric smooth terms (for
serv
and empgrowth
), but without including any
control for spatial and temporal autocorrelation and for the
spatio-temporal heterogeneity: \[y_{it}=
\sum_{k=1}^K \beta_k z_{k,it} + \sum_{\delta=1}^{\Delta}
g_\delta(x_{\delta_{it}}) + \epsilon_{it}\]
\[\epsilon_{it} \sim i.i.d.(0,\sigma^2_\epsilon)\]
formgam <- unrate ~ partrate + agri + cons +
pspl(serv, nknots = 15) +
pspl(empgrowth, nknots = 20)
gam <- pspatfit(formgam, data = unemp_it)
summary(gam)
##
## Call
## pspatfit(formula = formgam, data = unemp_it)
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.423844 1.095796 22.2887 < 2.2e-16 ***
## partrate -0.370101 0.017980 -20.5837 < 2.2e-16 ***
## agri 0.346768 0.020121 17.2342 < 2.2e-16 ***
## cons -0.185432 0.055401 -3.3471 0.0008289 ***
## pspl(serv) 1.921073 0.283973 6.7650 1.660e-11 ***
## pspl(empgrowth) -0.432407 0.088512 -4.8853 1.099e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 5.4818
## pspl(empgrowth) 0.2496
##
## Goodness-of-Fit
##
## EDF Total: 11.7314
## Sigma: 4.07483
## AIC: 9456.09
## BIC: 9524.28
The same model, but with a spatial autoregressive term (SAR): \[y_{it}= \rho \sum_{j=1}^N w_{ij,N} y_{jt} +\sum_{k=1}^K \beta_k z_{k,it} + \sum_{\delta=1}^{\Delta} g_\delta(x_{\delta_{it}}) + \epsilon_{it}\]
\[\epsilon_{it} \sim i.i.d.(0,\sigma^2_\epsilon)\]
gamsar <- pspatfit(formgam, data = unemp_it, listw = lwsp_it, method = "eigen", type = "sar")
summary(gamsar)
##
## Call
## pspatfit(formula = formgam, data = unemp_it, listw = lwsp_it,
## type = "sar", method = "eigen")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.068382 0.725355 13.8806 < 2.2e-16 ***
## partrate -0.162431 0.011705 -13.8768 < 2.2e-16 ***
## agri 0.093943 0.013111 7.1651 1.023e-12 ***
## cons -0.095438 0.036074 -2.6456 0.008207 **
## pspl(serv) 0.598250 0.216404 2.7645 0.005743 **
## pspl(empgrowth) -0.218982 0.054368 -4.0278 5.802e-05 ***
## rho 0.658979 0.011261 58.5211 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 6.9167
## pspl(empgrowth) 0.0000
##
## Goodness-of-Fit
##
## EDF Total: 13.9168
## Sigma: 3.56329
## AIC: 7763.26
## BIC: 7844.15
and a spatial error term: \[y_{it}= \sum_{k=1}^K \beta_k z_{k,it} + \sum_{\delta=1}^{\Delta} g_\delta(x_{\delta_{it}}) + \epsilon_{it}\]
\[\epsilon_{it} = \delta \sum_{j=1}^N w_{ij,N}\epsilon_{it}+u_{it}\]
\[u_{it} \sim i.i.d.(0,\sigma^2_u)\]
## Error in .solve.checkCond(a, tol) :
## 'a' is computationally singular, rcond(a)=4.30414e-31
## Error in .solve.checkCond(a, tol) :
## 'a' is computationally singular, rcond(a)=7.36531e-32
## Error in .solve.checkCond(a, tol) :
## 'a' is computationally singular, rcond(a)=6.93286e-32
##
## Call
## pspatfit(formula = formgam, data = unemp_it, listw = lwsp_it,
## type = "sem", method = "eigen")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.397175 1.059863 18.3016 < 2.2e-16 ***
## partrate -0.217678 0.020990 -10.3704 < 2.2e-16 ***
## agri 0.020614 0.015061 1.3687 0.171223
## cons -0.087933 0.039020 -2.2535 0.024314 *
## pspl(serv) 0.544096 0.269666 2.0177 0.043734 *
## pspl(empgrowth) -0.142984 0.055169 -2.5917 0.009606 **
## delta 0.751250 0.010998 68.3083 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 9.8356
## pspl(empgrowth) 0.0000
##
## Goodness-of-Fit
##
## EDF Total: 16.8356
## Sigma: 4.86032
## AIC: 8082.93
## BIC: 8180.8
We can control for spatio-temporal heterogeneity by including a
PS-ANOVA spatial trend in 3d. The interaction terms
(f12
,f1t
,f2t
and
f12t
) with nested basis. Remark: nest_sp1
,
nest_sp2
and nest_time
must be divisors of
nknots
.
\[y_{it}= \sum_{k=1}^K \beta_k z_{k,it} + \sum_{\delta=1}^{\Delta} g_\delta(x_{\delta_{it}}) + f_1(s_{1i})+f_2(s_{2i})+f_{\tau}(\tau_t)+ \\ f_{1,2}(s_{1i},s_{2i})+f_{1,\tau}(s_{1i},\tau_t)+f_{2,\tau}+(s_{2i},\tau_t)+f_{1,2,\tau}(s_{1i},s_{2i},\tau_t)+\epsilon_{it}\]
\[\epsilon_{it} \sim i.i.d.(0,\sigma^2_\epsilon)\]
form3d_psanova <- unrate ~ partrate + agri + cons +
pspl(serv, nknots = 15) +
pspl(empgrowth, nknots = 20) +
pspt(long, lat, year,
nknots = c(18,18,8), psanova = TRUE,
nest_sp1 = c(1, 2, 3),
nest_sp2 = c(1, 2, 3),
nest_time = c(1, 2, 2))
sp3danova <- pspatfit(form3d_psanova, data = unemp_it,
listw = lwsp_it, method = "Chebyshev")
summary(sp3danova)
##
## Call
## pspatfit(formula = form3d_psanova, data = unemp_it, listw = lwsp_it,
## method = "Chebyshev")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.975659 8.445688 0.4707 0.6379
## partrate 0.149545 0.021941 6.8158 1.197e-11 ***
## agri -0.020505 0.019754 -1.0380 0.2994
## cons -0.038684 0.040441 -0.9566 0.3389
## f1_main.1 -1.839321 13.263307 -0.1387 0.8897
## f2_main.1 -15.544083 10.965999 -1.4175 0.1565
## ft_main.1 2.414483 4.895533 0.4932 0.6219
## f12_int.1 -8.798610 12.357416 -0.7120 0.4765
## f1t_int.1 4.110521 6.471417 0.6352 0.5254
## f2t_int.1 -2.120851 6.780980 -0.3128 0.7545
## f12t_int.1 1.412301 7.659432 0.1844 0.8537
## pspl(serv) 0.091533 0.168186 0.5442 0.5863
## pspl(empgrowth) -0.287978 0.065553 -4.3931 1.169e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 5.6815
## pspl(empgrowth) 2.6263
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f1 10.667
## f2 9.733
## ft 7.782
## f12 45.424
## f1t 4.239
## f2t 21.473
## f12t 82.111
##
## Goodness-of-Fit
##
## EDF Total: 202.737
## Sigma: 1.53943
## AIC: 5975.89
## BIC: 7154.35
A semiparametric model with a PS-ANOVA spatial trend in 3d with the exclusion of some ANOVA components
form3d_psanova_restr <- unrate ~ partrate + agri + cons +
pspl(serv, nknots = 15) +
pspl(empgrowth, nknots = 20) +
pspt(long, lat, year,
nknots = c(18,18,8), psanova = TRUE,
nest_sp1 = c(1, 2, 3),
nest_sp2 = c(1, 2, 3),
nest_time = c(1, 2, 2),
f1t = FALSE, f2t = FALSE)
sp3danova_restr <- pspatfit(form3d_psanova_restr, data = unemp_it,
listw = lwsp_it, method = "Chebyshev")
summary(sp3danova_restr)
##
## Call
## pspatfit(formula = form3d_psanova_restr, data = unemp_it, listw = lwsp_it,
## method = "Chebyshev")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.366141 8.446761 0.5169 0.60528
## partrate 0.150986 0.021906 6.8923 7.089e-12 ***
## agri -0.027583 0.019676 -1.4018 0.16110
## cons -0.022771 0.040534 -0.5618 0.57432
## f1_main.1 -1.277158 13.265175 -0.0963 0.92331
## f2_main.1 -15.939808 10.969054 -1.4532 0.14632
## ft_main.1 4.182334 1.888331 2.2148 0.02687 *
## f12_int.1 -8.219153 12.404068 -0.6626 0.50764
## f12t_int.1 14.512194 6.281550 2.3103 0.02096 *
## pspl(serv) 0.064638 0.162365 0.3981 0.69059
## pspl(empgrowth) -0.297971 0.065505 -4.5488 5.680e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 5.4063
## pspl(empgrowth) 2.6206
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f1 10.591
## f2 9.663
## ft 7.765
## f12 45.581
## f1t 0.000
## f2t 0.000
## f12t 114.210
##
## Goodness-of-Fit
##
## EDF Total: 206.837
## Sigma: 1.5383
## AIC: 6019.34
## BIC: 7221.64
Now we add a spatial lag (sar) and temporal correlation in the noise of PSANOVA 3d model.
\[y_{it}= \rho \sum_{j=1}^N w_{ij,N} y_{jt}+\sum_{k=1}^K \beta_k z_{k,it} + \sum_{\delta=1}^{\Delta} g_\delta(x_{\delta_{it}}) + f_1(s_{1i})+f_2(s_{2i})+f_{\tau}(\tau_t)+ \\ f_{1,2}(s_{1i},s_{2i})+f_{1,\tau}(s_{1i},\tau_t)+f_{2,\tau}+(s_{2i},\tau_t)+f_{1,2,\tau}(s_{1i},s_{2i},\tau_t)+\epsilon_{it}\]
\[\epsilon_{it} \sim i.i.d.(0,\sigma^2_\epsilon)\]
sp3danovasarar1 <- pspatfit(form3d_psanova_restr, data = unemp_it,
listw = lwsp_it, method = "Chebyshev",
type = "sar", cor = "ar1")
summary(sp3danovasarar1)
##
## Call
## pspatfit(formula = form3d_psanova_restr, data = unemp_it, listw = lwsp_it,
## type = "sar", method = "Chebyshev", cor = "ar1")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.027011 7.811451 0.5155 0.60623
## partrate 0.152078 0.021345 7.1247 1.389e-12 ***
## agri -0.024655 0.022055 -1.1179 0.26372
## cons -0.017631 0.042885 -0.4111 0.68102
## f1_main.1 0.196195 12.177654 0.0161 0.98715
## f2_main.1 -12.570282 9.946143 -1.2638 0.20642
## ft_main.1 1.193027 0.843386 1.4146 0.15733
## f12_int.1 -5.807022 11.115730 -0.5224 0.60143
## f12t_int.1 0.502141 2.523234 0.1990 0.84228
## pspl(serv) 0.180237 0.165103 1.0917 0.27509
## pspl(empgrowth) -0.316471 0.053493 -5.9161 3.788e-09 ***
## rho 0.054391 0.021645 2.5128 0.01204 *
## phi 0.334044 0.013651 24.4705 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 4.0400
## pspl(empgrowth) 2.4343
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f1 10.197
## f2 9.761
## ft 7.879
## f12 42.100
## f1t 0.000
## f2t 0.000
## f12t 79.119
##
## Goodness-of-Fit
##
## EDF Total: 167.53
## Sigma: 1.62877
## AIC: 5495.29
## BIC: 6469.11
Examples of LR test:
## logLik rlogLik edf AIC BIC LRtest p.val
## gam -4716.3 -4732.1 11.731 9456.1 9555.7
## gamsar -3867.7 -3885.9 13.917 7763.3 7880.4 1692.3 0
## logLik rlogLik edf AIC BIC LRtest p.val
## gam -4716.3 -4732.1 11.731 9456.1 9555.7
## gamsar -3867.7 -3885.9 13.917 7763.3 7880.4 1692.3 0
## logLik rlogLik edf AIC BIC
## gamsar -3867.7 -3885.9 13.917 7763.3 7880.4
## gamsem -4024.6 -4041.2 16.836 8082.9 8213.7
## logLik rlogLik edf AIC BIC LRtest p.val
## gam -4716.3 -4732.1 11.731 9456.1 9555.7
## sp3danova_restr -2802.8 -2807.8 206.837 6019.3 7213.4 3848.6 0
## logLik rlogLik edf AIC BIC
## sp3danova_restr -2802.8 -2807.8 206.84 6019.3 7213.4
## sp3danovasarar1 -2580.1 -2587.3 167.53 5495.3 6471.6
Plot of non-parametric terms
list_varnopar <- c("serv", "empgrowth")
terms_nopar <- fit_terms(sp3danova_restr, list_varnopar)
names(terms_nopar)
## [1] "fitted_terms" "se_fitted_terms"
## [3] "fitted_terms_fixed" "se_fitted_terms_fixed"
## [5] "fitted_terms_random" "se_fitted_terms_random"
##
## Total Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## partrate 0.161421 0.022624 7.135004 0.0000
## agri -0.025590 0.023074 -1.109062 0.2674
## cons -0.015641 0.045511 -0.343672 0.7311
##
## Direct Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## partrate 0.152727 0.021223 7.196361 0.0000
## agri -0.024216 0.021834 -1.109105 0.2674
## cons -0.014781 0.042970 -0.343994 0.7309
##
## Indirect Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## partrate 0.00869470 0.00372253 2.33569690 0.0195
## agri -0.00137355 0.00142789 -0.96194786 0.3361
## cons -0.00085948 0.00274455 -0.31315901 0.7542
Plot of spatial trends in 1996, 2005 and 2019
plot_sp3d(sp3danovasarar1, data = unemp_it_sf,
time_var = "year", time_index = c(1996, 2005, 2019),
addmain = FALSE, addint = FALSE)
Plot of spatio-temporal trend, main effects and interaction effect for a year:
plot_sp3d(sp3danovasarar1, data = unemp_it_sf,
time_var = "year", time_index = c(2019),
addmain = TRUE, addint = TRUE)
Plot of temporal trend for each province:
Plots of fitted and residuals of the last model:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.