The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

psycModel

Integrated Toolkit for Psychological Analysis and Modeling in R

CRAN version R-CMD-check Codecov test coverage download-total download-monthly

Installation

CRAN Stable Version

# Install the standard version 
install.packages('psycModel')

# Install all of the suggested dependencies for full functionality 
install.packages('psycModel',dependencies = c("Depends", "Imports","Suggests")) 

Dev Version (newest feature)

devtools::install_github('jasonmoy28/psycModel')

Key Features

A beginner-friendly R package for statistical analysis in social science (intermediate & advanced R users should also find it useful)
Tired of manually writing all variables in a model? You can use dplyr::select() syntax for all models
Produce publication-ready tables and figures (e.g., descriptive table)
Fitting models, plotting, checking goodness of fit, and model assumption violations all in one place.
Beautiful and easy-to-read output. Check out this example now.

Supported Models

Regression models:
* Linear regression (i.e., support ANOVA, ANCOVA) & curvilinear regression
* Linear mixed effect model (i.e., HLM, MLM).

Structure Equation Modeling:
* Exploratory & confirmatory factor analysis
* Measurement invariance (MGCFA approach)
* Mediation analysis (SEM approach)

Other:
* Descriptive statistics
* Correlation
* Reliability analysis


Note: If you like this package, please considering give it a star. I would really appreciate that. If you experience any problem, please feel free to open a new issue here

Credit

Authors: Jason Moy

Citation: Moy, J. H. (2021). psycModel: Integrated Toolkit for Psychological Analysis and Modeling in R. CRAN. https://cran.r-project.org/package=psycModel.

Logo Design: Danlin Liu

Disclaimer:

The current release is the alpha version of the package since I plan to add more features and support more models in the future (read more about planned updates here). If you are interested in help building this package, please feel free to submit a pull request / GitHub issue. Although I tried my best to fix any bugs, the package is not guarantee to be bug-free. If you find any bugs, please submit them in the GitHub issue. This package is licensed under the GPLv3 liscense. You may use, re-distribute, and modified the package. Additionally, this package does provide any kind of warranty, either expressed or implied based on the GPLv3 liscense. Finally, you should expect many changes that are not backward compatible until the package’s first major release (i.e., v1.0.0).

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.