The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Note: This vignette is a work in progress.
This vignette will walk you through estimating barebones meta-analyses of correlations between multiple constructs. For more vignettes, see the psychmeta overview.
To begin, you will need your meta-analytic data sheet for analysis.
We recommend the rio package for importing data to
R. For an introduction to rio, see
vignette("rio", "rio")
.
psychmeta assumes that your data are in “long” format, with each row corresponding to one effect size. For example, this is the format used in this data frame:
sample_id | moderator | x_name | y_name | n | rxyi | rxxi | ryyi | citekey |
---|---|---|---|---|---|---|---|---|
1 | 1 | X | Y | 416 | 0.49 | 0.79 | 0.77 | Watson2005 |
1 | 1 | X | Z | 416 | 0.40 | 0.79 | 0.77 | Watson2005 |
1 | 1 | Y | Z | 416 | 0.36 | 0.77 | 0.77 | Watson2005 |
2 | 1 | X | Y | 241 | 0.54 | 0.82 | 0.84 | Watson2005 |
2 | 1 | X | Z | 241 | 0.56 | 0.82 | 0.89 | Watson2005 |
2 | 1 | Y | Z | 241 | 0.62 | 0.84 | 0.89 | Watson2005 |
3 | 1 | X | Y | 479 | 0.34 | 0.73 | 0.87 | Zellars2006 |
3 | 1 | X | Z | 479 | 0.40 | 0.73 | 0.79 | Zellars2006 |
3 | 1 | Y | Z | 479 | 0.53 | 0.87 | 0.79 | Zellars2006 |
4 | 1 | X | Y | 167 | 0.37 | 0.78 | 0.79 | Bandura1980 |
In this table, - sample_id
contains
labels indicating the sample each effect size is drawn from; -
moderator
is a moderator variable, each
row containing the effect size’s level for that moderator; -
x_name
and
y_name
are columns indicating the
variables/constructs being related in the effect size; -
n
is the sample size for the effect size;
- rxyi
is the effect size (the correlation
between the two constructs/variables); -
rxxi
and
ryyi
are the sample reliability values for
the measures of the x_name
and y_name
variables, respectively; - citekey
contains the citations keys for each study (used to generate
bibliographies of included studies).
You can see this data set includes correlations among three
variables: X
, Y
, and Z
, and that
each sample contributes several effect sizes, one each for for different
pairs of variables/constructs.
If your data are in a different format, you can use the
reshape_wide2long()
function to reshape it.
Let’s assume your data frame is called coding_sheet
.
coding_sheet <- data_r_meas_multi
head(coding_sheet)
#> sample_id moderator x_name y_name n rxyi rxxi ryyi citekey
#> 1 1 1 X Y 416 0.49 0.79 0.77 Watson2005
#> 2 1 1 X Z 416 0.40 0.79 0.77 Watson2005
#> 3 1 1 Y Z 416 0.36 0.77 0.77 Watson2005
#> 4 2 1 X Y 241 0.54 0.82 0.84 Watson2005
#> 5 2 1 X Z 241 0.56 0.82 0.89 Watson2005
#> 6 2 1 Y Z 241 0.62 0.84 0.89 Watson2005
The primary function to conduct meta-analyses of correlations is
ma_r()
. To conduct barebones meta-analyses, run:
ma_res <- ma_r(rxyi = rxyi,
n = n,
construct_x = x_name,
construct_y = y_name,
sample_id = sample_id,
moderators = moderator,
data = coding_sheet
)
#> **** Running ma_r: Meta-analysis of correlations ****
data
is your data frame.rxyi
, n
,
construct_x
,
construct_y
,
sample_id
, and
moderators
are the names of the columns in
your data frame that contain the appropriate values.
rxyi
is the correlation effect
sizes;n
is the sample sizes;construct_x
and
construct_y
are the labels for the
variables/constructs being correlated;sample_id
is the sample identification
labels;moderators
is a vector of moderator
variable names for the meta-analyses."rxyi"
, "n"
) or without (e.g.,
rxyi
, n
).To conduct a barebones meta-analysis, at minimum, n
and
rxyi
are needed.
By default, correlations are weighted by sample size. You can
specify alternative weights using the wt_type
argument.
Random-effects variance (τ2 or
SDres2) is estimated using the
Hunter-Schmidt estimator, computed using the unbiased sample variance
estimator (i.e., dividing by \(k-1\)
rather than \(k\)). To use the
maximum-likelihood estimator instead, specify
var_unbiased = FALSE
.
Barebones results are corrected for the small-sample bias in the
correlation coefficient. To disable this correction, specify
correct_bias = FALSE
.
By default, confidence and credibility intervals are constructed
using a t distribution with \(k-1\) degrees of freedom. To use a normal
distribution instead, specify, conf_method = "norm"
and
cred_method = "norm"
. To customize the coverage levels for
these intervals, use the conf_level
and
cred_level
arguments.
A psychmeta meta-analsyis object is a data frame, with each row being a meta-analysis or subanalysis and each column containing information about or results from that analysis. For example, the results of the analysis above look like this:
ma_res
#> Overview tibble of psychmeta meta-analysis of correlations
#> ----------------------------------------------------------------------
#> # A tibble: 9 × 8
#> analysis_id pair_id construct_x construct_y analysis_type moderator meta_tables escalc
#> * <int> <int> <fct> <fct> <fct> <fct> <named list> <named list>
#> 1 1 1 X Y Overall All Levels <named list [3]> <named list [4]>
#> 2 2 1 X Y Simple Moderator 1 <named list [3]> <named list [4]>
#> 3 3 1 X Y Simple Moderator 2 <named list [3]> <named list [4]>
#> 4 4 2 X Z Overall All Levels <named list [3]> <named list [4]>
#> 5 5 2 X Z Simple Moderator 1 <named list [3]> <named list [4]>
#> 6 6 2 X Z Simple Moderator 2 <named list [3]> <named list [4]>
#> 7 7 3 Y Z Overall All Levels <named list [3]> <named list [4]>
#> 8 8 3 Y Z Simple Moderator 1 <named list [3]> <named list [4]>
#> 9 9 3 Y Z Simple Moderator 2 <named list [3]> <named list [4]>
#>
#> To extract results, try summary() or the get_stuff functions (run ?get_stuff for help).
Each row corresponds to a different pair of variables/constructs (X-Y; X-Z; Y-Z) and level of the moderator variable (overall/all levels pooled together; moderator = 1; moderator = 2).
analysis_id
is a numeric label for
each analysis;
pair_id
is a numeric label for each
pair of variables/constructs (X-Y; X-Z; Y-Z);
construct_x
and
construct_y
indicate which
variables/constructs are being meta-analyzed.
analysis_type
indicates the type of
analysis.
“Overall” means an overall meta-analysis, pooling across all moderator levels.
“Simple Moderator” means a subgroup moderator analysis of only studies with the specified levels of the moderator variable(s) in the next column(s).
(See below for how to conduct meta-analyses with multiple moderator variables or with continuous moderators)
meta_tables
contains the principal
meta-analysis results tables.
escalc
contains tables of effect
sizes, sampling error variances, weights, residuals, and other data.
These tables can be used for follow-up analyses or with the
metafor package for additional meta-analysis
techniques.
To view meta-anlaysis results tables, use the summary()
function:
summary(ma_res)
#> Bare-bones meta-analysis results
#> ----------------------------------------------------------------------
#> analysis_id pair_id construct_x construct_y analysis_type moderator k N mean_r sd_r se_r sd_res CI_LL_95 CI_UL_95 CR_LL_80 CR_UL_80
#> 1 1 1 X Y Overall All Levels 40 11927 0.317 0.1249 0.0198 0.1135 0.277 0.357 0.169 0.465
#> 2 2 1 X Y Simple Moderator 1 20 5623 0.397 0.0886 0.0198 0.0729 0.356 0.439 0.300 0.494
#> 3 3 1 X Y Simple Moderator 2 20 6304 0.245 0.1086 0.0243 0.0948 0.194 0.296 0.119 0.371
#> 4 4 2 X Z Overall All Levels 40 11927 0.324 0.1288 0.0204 0.1179 0.282 0.365 0.170 0.477
#> 5 5 2 X Z Simple Moderator 1 20 5623 0.422 0.0922 0.0206 0.0780 0.379 0.465 0.319 0.526
#> 6 6 2 X Z Simple Moderator 2 20 6304 0.236 0.0861 0.0193 0.0677 0.195 0.276 0.146 0.326
#> 7 7 3 Y Z Overall All Levels 40 11927 0.311 0.1369 0.0217 0.1265 0.268 0.355 0.146 0.476
#> 8 8 3 Y Z Simple Moderator 1 20 5623 0.405 0.1100 0.0246 0.0979 0.354 0.457 0.275 0.535
#> 9 9 3 Y Z Simple Moderator 2 20 6304 0.228 0.0997 0.0223 0.0841 0.181 0.274 0.116 0.339
#>
#>
#> Information available in the meta-analysis object includes:
#> - meta_tables [ access using get_metatab() ]
#> - escalc [ access using get_escalc() ]
In this table,
analysis_id
,
pair_id
,
construct_x
,
construct_y
, and the moderator columns are
defined as above.k
is the number of effect sizes
contributing to each meta-analysis. N
is the total sample
size contributing to each meta-analysis.mean_r
is the weighted mean
correlation.sd_r
is the weighted observed standard
deviation of correlations.se_r
is the standard error of
mean_r
.sd_res
is the estimated random-effects
standard deviation (residual SD of correlations after
accounting for sampling error).CI_LL_95
and
CI_UL_95
are the upper and lower bounds of
the confidence interval for mean_r
; the number indicates
the coverage level (default: 95%).CR_LL_80
and
CR_UL_80
are the upper and lower bounds of
the credibility interval for the estimated population distribution; the
number indicates the coverage level (default: 80%).To view additional results, such as observed variance
(var_r
) or standard deviation of sampling errors
(sd_e
), use the get_metatab()
function and
select the appropriate columns:
names(get_metatab(ma_res))
#> [1] "analysis_id" "pair_id" "construct_x" "construct_y" "analysis_type" "moderator" "k" "N" "mean_r"
#> [10] "var_r" "var_e" "var_res" "sd_r" "se_r" "sd_e" "sd_res" "CI_LL_95" "CI_UL_95"
#> [19] "CR_LL_80" "CR_UL_80"
get_metatab(ma_res)$var_r
#> [1] 0.015607018 0.007854615 0.011804107 0.016601343 0.008502949 0.007418860 0.018751347 0.012097853 0.009938716
To view all columns of this table, convert it to a
data.frame
or tibble
:
dplyr::as_tibble(get_metatab(ma_res))
#> # A tibble: 9 × 20
#> analysis_id pair_id construct_x construct_y analysis_type moderator k N mean_r var_r var_e var_res sd_r se_r sd_e sd_res CI_LL_95 CI_UL_95
#> <int> <int> <fct> <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 X Y Overall All Leve… 40 11927 0.317 0.0156 0.00273 0.0129 0.125 0.0198 0.0523 0.113 0.277 0.357
#> 2 2 1 X Y Simple Moderat… 1 20 5623 0.397 0.00785 0.00255 0.00531 0.0886 0.0198 0.0504 0.0729 0.356 0.439
#> 3 3 1 X Y Simple Moderat… 2 20 6304 0.245 0.0118 0.00281 0.00899 0.109 0.0243 0.0530 0.0948 0.194 0.296
#> 4 4 2 X Z Overall All Leve… 40 11927 0.324 0.0166 0.00270 0.0139 0.129 0.0204 0.0520 0.118 0.282 0.365
#> 5 5 2 X Z Simple Moderat… 1 20 5623 0.422 0.00850 0.00242 0.00608 0.0922 0.0206 0.0492 0.0780 0.379 0.465
#> 6 6 2 X Z Simple Moderat… 2 20 6304 0.236 0.00742 0.00284 0.00458 0.0861 0.0193 0.0533 0.0677 0.195 0.276
#> 7 7 3 Y Z Overall All Leve… 40 11927 0.311 0.0188 0.00275 0.0160 0.137 0.0217 0.0525 0.126 0.268 0.355
#> 8 8 3 Y Z Simple Moderat… 1 20 5623 0.405 0.0121 0.00251 0.00959 0.110 0.0246 0.0501 0.0979 0.354 0.457
#> 9 9 3 Y Z Simple Moderat… 2 20 6304 0.228 0.00994 0.00286 0.00708 0.0997 0.0223 0.0535 0.0841 0.181 0.274
#> # ℹ 2 more variables: CR_LL_80 <dbl>, CR_UL_80 <dbl>
as.data.frame(get_metatab(ma_res))
#> analysis_id pair_id construct_x construct_y analysis_type moderator k N mean_r var_r var_e var_res sd_r se_r
#> 1 1 1 X Y Overall All Levels 40 11927 0.3166643 0.015607018 0.002731165 0.012875853 0.12492805 0.01975286
#> 2 2 1 X Y Simple Moderator 1 20 5623 0.3971059 0.007854615 0.002545026 0.005309589 0.08862626 0.01981744
#> 3 3 1 X Y Simple Moderator 2 20 6304 0.2449125 0.011804107 0.002813166 0.008990941 0.10864671 0.02429414
#> 4 4 2 X Z Overall All Levels 40 11927 0.3235671 0.016601343 0.002704401 0.013896942 0.12884620 0.02037237
#> 5 5 2 X Z Simple Moderator 1 20 5623 0.4220597 0.008502949 0.002422999 0.006079950 0.09221143 0.02061910
#> 6 6 2 X Z Simple Moderator 2 20 6304 0.2357143 0.007418860 0.002839689 0.004579171 0.08613281 0.01925988
#> 7 7 3 Y Z Overall All Levels 40 11927 0.3113684 0.018751347 0.002751395 0.015999952 0.13693556 0.02165141
#> 8 8 3 Y Z Simple Moderator 1 20 5623 0.4053224 0.012097853 0.002505340 0.009592513 0.10999024 0.02459457
#> 9 9 3 Y Z Simple Moderator 2 20 6304 0.2275640 0.009938716 0.002862440 0.007076275 0.09969311 0.02229206
#> sd_e sd_res CI_LL_95 CI_UL_95 CR_LL_80 CR_UL_80
#> 1 0.05226055 0.11347182 0.2767104 0.3566182 0.1687380 0.4645905
#> 2 0.05044825 0.07286692 0.3556276 0.4385843 0.3003585 0.4938534
#> 3 0.05303929 0.09482057 0.1940642 0.2957607 0.1190165 0.3708084
#> 4 0.05200385 0.11788529 0.2823600 0.3647741 0.1698872 0.4772469
#> 5 0.04922396 0.07797403 0.3789034 0.4652160 0.3185314 0.5255880
#> 6 0.05328873 0.06766957 0.1954029 0.2760257 0.1458675 0.3255611
#> 7 0.05245374 0.12649092 0.2675743 0.3551626 0.1464700 0.4762669
#> 8 0.05005337 0.09794137 0.3538453 0.4567994 0.2752828 0.5353619
#> 9 0.05350178 0.08412060 0.1809062 0.2742218 0.1158747 0.3392533
Results for subgroup analyses for different levels of categorical
moderators are shown in the rows of the meta-analysis results table. To
estimate confidence intervals for differences between levels or an
omnibus ANOVA statistic, use the anova()
function:
anova(ma_res)
#> Warning: There was 1 warning in `mutate()`.
#> ℹ In argument: `anova = purrr::map(.data$data, .anova.ma_psychmeta, conf_level)`.
#> ℹ In group 1: `pair_id = 1`, `construct_x = X`, `construct_y = Y`.
#> Caused by warning:
#> ! The `x` argument of `as_tibble.matrix()` must have unique column names if `.name_repair` is omitted as of tibble 2.0.0.
#> ℹ Using compatibility `.name_repair`.
#> ℹ The deprecated feature was likely used in the psychmeta package.
#> Please report the issue at <https://github.com/psychmeta/psychmeta/issues>.
#> pair_id construct_x construct_y moderator F value df_num df_denom level_1 level_2 mean_1 mean_2 diff CI_LL_95 CI_UL_95
#> 1 1 X Y moderator 23.6 1 36.5 1 2 0.397 0.245 0.152 0.0887 0.216
#> 2 2 X Z moderator 43.6 1 37.8 1 2 0.422 0.236 0.186 0.1292 0.243
#> 3 3 Y Z moderator 28.7 1 37.6 1 2 0.405 0.228 0.178 0.1106 0.245
See Artifact corrections](artifact_corrections.html).
To output the main meta-analysis results table to RMarkdown, Word,
HTML, PDF, or other formats, use the metabulate()
function.
For example, to output the above results to a Word document, run:
You can add plots for each meta-analysis in ma_res
using
the plot_forest()
and plot_funnel()
functions:
ma_res <- plot_funnel(ma_res)
#> Funnel plots have been added to 'ma_obj' - use get_plots() to retrieve them.
ma_res <- plot_forest(ma_res)
#> Forest plots have been added to 'ma_obj' - use get_plots() to retrieve them.
You can view these plots using the get_plots()
function.
This will return a list of all of the plots in this results. Specify
which meta-analysis you want to view plots for by passing its
analysis_id
to [[
:
get_plots(ma_res)[["forest"]][[2]]
#> $moderated
#> NULL
#>
#> $unmoderated
#> $unmoderated$barebones
#>
#> $unmoderated$individual_correction
#> NULL
get_plots(ma_res)[["funnel"]][[2]]
#> $barebones
#>
#> $individual_correction
#> list()
#>
#> $artifact_distribution
#> list()
For forest plots, if you select an “Overall” meta-analysis, it will
include plots faceted by moderator levels ("moderated"
) and
not ("unmoderated"
):
psychmeta reports the random-effects standard
deviaton (τ or SD_res_) and credibility intervals
(mean_r
± crit × SDres) in the
main meta-analaysis results tables. To view confidence intervals for
SD_res_ or additional heterogeneity statistics, use the
heterogeneity()
function:
ma_res <- heterogeneity(ma_res)
#> Heterogeneity analyses have been added to 'ma_obj' - use get_heterogeneity() to retrieve them.
get_heterogeneity(ma_res)[[1]][["barebones"]]
#>
#> Heterogeneity results for r
#> ---------------------------
#>
#> Accounted for a total of 17.500% of variance
#>
#> Correlation between r values and artifactual perturbations: 0.418
#>
#> The reliability of observed effect sizes is: 0.825
#>
#>
#> Random effects variance estimates
#> ---------------------------------
#> Hunter-Schmidt method (with k-correction):
#> sd_res (tau): 0.113, SE = 0.016, 95% CI = [0.088, 0.152]
#> var_res (tau^2): 0.013, SE = 0.004, 95% CI = [0.008, 0.023]
#>
#> Q statistic: 222.862 (df = 39, p = 0.000)
#> H: 2.390 H^2: 5.714 I^2: 82.500
#>
#> DerSimonian-Laird method:
#> sd_res (tau): 0.114
#> var_res (tau^2): 0.013
#>
#> Q statistic: 223.408
#> H: 2.393 H^2: 5.728 I^2: 82.543
#>
#> Outlier-robust method (absolute deviation from mean):
#> sd_res (tau_r): 0.121
#> var_res (tau_r^2): 0.015
#>
#> Q_r statistic: 78.734
#> H_r: 2.498 H_r^2: 6.242 I_r^2: 0.840
#>
#> Outlier-robust method (absolute deviation from median):
#> sd_res (tau_m): 0.118
#> var_res (tau_m^2): 0.014
#>
#> Q_m statistic: 77.813
#> H_m: 2.438 H_m^2: 5.944 I_m^2: 0.832
psychmeta supports cumulative meta-analysis for publication/small-sample bias detection, leave-1-out sensitivity analyses, and bootstrap confidence intervals using the sensitivity function:
ma_res <- sensitivity(ma_res)
#> **** Computing sensitivity analyses ****
#> Bootstrapped meta-analyses have been added to 'ma_obj' - use get_bootstrap() to retrieve them.
#> leave-1-out meta-analyses have been added to 'ma_obj' - use get_leave1out() to retrieve them.
#> Cumulative meta-analyses have been added to 'ma_obj' - use get_cumulative() to retrieve them.
get_cumulative(ma_res)[[1]][["barebones"]]
#> Cumulative meta-analysis results
#> ----------------------------------------
#> study_added k N mean_r var_r var_e var_res sd_r se_r sd_e sd_res CI_LL_95 CI_UL_95 CR_LL_80 CR_UL_80
#> 1 28 1 487 0.300 NA 0.00170 NA NA 0.0413 0.0413 NA 0.2194 0.381 NA NA
#> 2 3 2 966 0.320 0.000802 0.00167 -0.000869 0.0283 0.0200 0.0409 0.0000 0.0658 0.575 0.320 0.320
#> 3 31 3 1407 0.270 0.008675 0.00184 0.006838 0.0931 0.0538 0.0429 0.0827 0.0387 0.501 0.114 0.426
#> 4 33 4 1841 0.268 0.005916 0.00188 0.004039 0.0769 0.0385 0.0433 0.0636 0.1453 0.390 0.164 0.372
#> 5 14 5 2273 0.308 0.013208 0.00181 0.011402 0.1149 0.0514 0.0425 0.1068 0.1655 0.451 0.144 0.472
#> 6 1 6 2689 0.336 0.015939 0.00176 0.014180 0.1263 0.0515 0.0419 0.1191 0.2039 0.469 0.161 0.512
#> 7 17 7 3086 0.342 0.013757 0.00177 0.011985 0.1173 0.0443 0.0421 0.1095 0.2336 0.451 0.184 0.500
#> 8 38 8 3461 0.338 0.012208 0.00182 0.010389 0.1105 0.0391 0.0426 0.1019 0.2452 0.430 0.193 0.482
#> 9 6 9 3818 0.338 0.010894 0.00185 0.009040 0.1044 0.0348 0.0431 0.0951 0.2576 0.418 0.205 0.471
#> 10 32 10 4165 0.326 0.011469 0.00192 0.009547 0.1071 0.0339 0.0438 0.0977 0.2498 0.403 0.191 0.462
#> 11 27 11 4510 0.331 0.010806 0.00194 0.008868 0.1040 0.0313 0.0440 0.0942 0.2614 0.401 0.202 0.460
#> 12 37 12 4855 0.317 0.012867 0.00200 0.010862 0.1134 0.0327 0.0448 0.1042 0.2449 0.389 0.175 0.459
#> 13 21 13 5197 0.317 0.011939 0.00203 0.009909 0.1093 0.0303 0.0451 0.0995 0.2505 0.383 0.182 0.452
#> 14 20 14 5536 0.321 0.011481 0.00204 0.009442 0.1072 0.0286 0.0452 0.0972 0.2592 0.383 0.190 0.452
#> 15 24 15 5872 0.324 0.010973 0.00205 0.008923 0.1048 0.0270 0.0453 0.0945 0.2665 0.383 0.197 0.452
#> 16 30 16 6195 0.309 0.015242 0.00212 0.013122 0.1235 0.0309 0.0460 0.1146 0.2428 0.374 0.155 0.462
#> 17 36 17 6515 0.301 0.015529 0.00216 0.013366 0.1246 0.0302 0.0465 0.1156 0.2373 0.365 0.147 0.456
#> 18 23 18 6828 0.306 0.015222 0.00217 0.013051 0.1234 0.0291 0.0466 0.1142 0.2445 0.367 0.154 0.458
#> 19 22 19 7138 0.300 0.015323 0.00221 0.013113 0.1238 0.0284 0.0470 0.1145 0.2403 0.360 0.148 0.452
#> 20 18 20 7441 0.308 0.016155 0.00221 0.013947 0.1271 0.0284 0.0470 0.1181 0.2483 0.367 0.151 0.465
#> 21 11 21 7739 0.313 0.016082 0.00222 0.013867 0.1268 0.0277 0.0471 0.1178 0.2548 0.370 0.156 0.469
#> 22 19 22 8030 0.316 0.015749 0.00223 0.013522 0.1255 0.0268 0.0472 0.1163 0.2601 0.371 0.162 0.470
#> 23 12 23 8315 0.319 0.015428 0.00224 0.013188 0.1242 0.0259 0.0473 0.1148 0.2649 0.372 0.167 0.470
#> 24 40 24 8586 0.315 0.015286 0.00227 0.013012 0.1236 0.0252 0.0477 0.1141 0.2630 0.367 0.165 0.466
#> 25 34 25 8854 0.313 0.014968 0.00230 0.012664 0.1223 0.0245 0.0480 0.1125 0.2624 0.363 0.165 0.461
#> 26 16 26 9110 0.318 0.015639 0.00231 0.013328 0.1251 0.0245 0.0481 0.1154 0.2680 0.369 0.167 0.470
#> 27 5 27 9365 0.320 0.015334 0.00233 0.013006 0.1238 0.0238 0.0483 0.1140 0.2715 0.369 0.171 0.470
#> 28 9 28 9619 0.318 0.015125 0.00236 0.012766 0.1230 0.0232 0.0486 0.1130 0.2704 0.366 0.170 0.467
#> 29 35 29 9869 0.318 0.014723 0.00238 0.012342 0.1213 0.0225 0.0488 0.1111 0.2720 0.364 0.172 0.464
#> 30 39 30 10116 0.320 0.014558 0.00240 0.012163 0.1207 0.0220 0.0489 0.1103 0.2754 0.365 0.176 0.465
#> 31 10 31 10360 0.322 0.014260 0.00241 0.011847 0.1194 0.0214 0.0491 0.1088 0.2778 0.365 0.179 0.464
#> 32 2 32 10601 0.327 0.015026 0.00242 0.012610 0.1226 0.0217 0.0492 0.1123 0.2824 0.371 0.180 0.474
#> 33 13 33 10838 0.328 0.014805 0.00243 0.012373 0.1217 0.0212 0.0493 0.1112 0.2851 0.371 0.183 0.474
#> 34 25 34 11075 0.323 0.015912 0.00247 0.013440 0.1261 0.0216 0.0497 0.1159 0.2787 0.367 0.171 0.474
#> 35 8 35 11288 0.321 0.015838 0.00250 0.013334 0.1258 0.0213 0.0500 0.1155 0.2773 0.364 0.170 0.471
#> 36 29 36 11471 0.319 0.015734 0.00254 0.013193 0.1254 0.0209 0.0504 0.1149 0.2765 0.361 0.169 0.469
#> 37 4 37 11638 0.320 0.015536 0.00257 0.012964 0.1246 0.0205 0.0507 0.1139 0.2782 0.361 0.171 0.468
#> 38 15 38 11786 0.318 0.015541 0.00261 0.012928 0.1247 0.0202 0.0511 0.1137 0.2771 0.359 0.170 0.466
#> 39 26 39 11916 0.317 0.015602 0.00266 0.012942 0.1249 0.0200 0.0516 0.1138 0.2760 0.357 0.168 0.465
#> 40 7 40 11927 0.317 0.015607 0.00273 0.012876 0.1249 0.0198 0.0523 0.1135 0.2767 0.357 0.169 0.465
#>
#> See the 'plots' list for data visualizations.
get_cumulative(ma_res)[[1]][["barebones"]][["plots"]]
#> $mean_plot
#> Warning: Removed 1 rows containing missing values (`geom_segment()`).
#> Warning: Removed 1 rows containing missing values (`geom_point()`).
#> Removed 1 rows containing missing values (`geom_point()`).
#>
#> $sd_plot
#> Warning: Removed 1 rows containing missing values (`geom_point()`).
#> Warning: Removed 1 row containing missing values (`geom_line()`).
get_bootstrap(ma_res)[[1]][["barebones"]]
#> Bootstrapped meta-analysis results
#> ----------------------------------------
#> boot_mean boot_var CI_LL_95 CI_UL_95
#> k 4.00e+01 0.00e+00 4.00e+01 4.00e+01
#> N 1.19e+04 3.23e+05 1.08e+04 1.30e+04
#> mean_r 3.17e-01 3.95e-04 2.78e-01 3.55e-01
#> var_r 1.51e-02 9.26e-06 1.10e-02 2.38e-02
#> var_e 2.73e-03 2.52e-08 2.47e-03 3.12e-03
#> var_res 1.24e-02 9.05e-06 8.35e-03 2.13e-02
#> sd_r 1.22e-01 1.55e-04 1.05e-01 1.54e-01
#> se_r 1.93e-02 3.86e-06 1.66e-02 2.44e-02
#> sd_e 5.22e-02 2.29e-06 4.97e-02 5.58e-02
#> sd_res 1.10e-01 1.86e-04 9.13e-02 1.46e-01
#> CI_LL_95 2.78e-01 4.59e-04 2.34e-01 3.17e-01
#> CI_UL_95 3.56e-01 3.62e-04 3.20e-01 3.93e-01
#> CR_LL_80 1.73e-01 9.11e-04 1.05e-01 2.23e-01
#> CR_UL_80 4.61e-01 5.11e-04 4.25e-01 5.14e-01
#>
#> See list item 'boot_data' for meta-analysis results from each bootstrap iteration
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.