The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
pvaluefunctions
packageWe published an accompanying paper to illustrate the use of p-value functions:
Infanger D, Schmidt-Trucksäss A. (2019): P value functions: An underused method to present research results and to promote quantitative reasoning. Statistics in Medicine, 38: 4189-4197. doi: 10.1002/sim.8293.
The code and instructions to reproduce all graphics in our paper can be found in the following GitHub repository: https://github.com/DInfanger/pvalue_functions
This vignette shows how to use the pvaluefunctions
package wich contains an R function to create graphics of p-value functions, confidence distributions, confidence densities, or the Surprisal value (S-value) (Greenland 2019).
Install (install.packages("pvaluefunctions")
) and load the package from CRAN.
library(pvaluefunctions)
There is only one function needed to create the plots: conf_dist()
. The function has the following arguments:
estimate
: Numerical vector containing the estimate(s).n
: Numerical vector containing the sample size(s). Required for correlations, variances, proportions and differences between proportions. Must be equal the number of estimates.df
: Numerical vector containing the degrees of freedom. Required for statistics based on the t-distribution (e.g. linear regression) and t-tests. Must be equal the number of estimates.stderr
: Numerical vector containing the standard error(s) of the estimate(s). Required for statistics based on the t-distribution (e.g. linear regression) and the normal distribution (e.g. logistic regression). Must be equal the number of estimate(s).tstat
: Numerical vector containing the t-statistic(s). Required for t-tests (means and mean differences). Must be equal the number of estimates.type
: String indicating the type of the estimate. Must be one of the following: ttest
, linreg
, gammareg
, general_t
, logreg
, poisreg
, coxreg
, general_z
, pearson
, spearman
, kendall
, var
, prop
, propdiff
.plot_type
: String indicating the type of plot. Must be one of the following: cdf
(confidence distribution), pdf
(confidence density), p_val
(p-value function, the default), s_val
(Surprisal). For differences between independent proportions, only p-value functions and Surprisal value functions are available.n_values
(optional): Integer indicating the number of points that are used to generate the graphics. The higher this number, the higher the computation time and resolution.est_names
(optional): String vector indicating the names of the estimate(s). Must be equal the number of estimates.conf_level
(optional): Numerical vector indicating the confidence level(s). Bust be between 0 and 1.null_values
(optional): Numerical vector indicating the null value(s) in the plot on the untransformed scale. For example: If you want to plot odds ratios from logistic regressions, the null_values
have to be given on the log-odds scale. If x limits are specified with xlim
, all null values outside of the specified x limits are ignored for plotting and a message is printed.trans
(optional): String indicating the transformation function that will be applied to the estimates and confidence curves. For example: "exp"
for an exponential transformation of the log-odds in logistic regression.alternative
: String indicating if the confidence level(s) are two-sided or one-sided. Must be one of the following: two_sided
, one_sided
.log_yaxis
: Logical. Indicating if a portion of the y-axis should be displayed on the logarithmic scale.cut_logyaxis
: Numerical value indicating the threshold below which the y-axis will be displayed logarithmically. Must lie between 0 and 1.xlim
(optional) Optional numerical vector of length 2 (x1, x2) indicating the limits of the x-axis on the untransformed scale. For example: If you want to plot p-value functions for odds ratios from logistic regressions, the limits have to be given on the log-odds scale. Note that x1 > x2 is allowed but then x2 will be the left limit and x1 the right limit (i.e. the limits are sorted before plotting). Null values (specified in null_values
) that are outside of the specified limits are ignored and a message is printed.together
: Logical. Indicating if graphics for multiple estimates should be displayed together or on separate plots.plot_legend
Logical. Indicating if a legend should be plotted if multiple curves are plotted together with different colors (i.e. together = TRUE
and same_color = FALSE
).same_color
: Logical. Indicating if curves should be distinguished using colors if they are plotted together (i.e. together = TRUE
). Setting this to FALSE
also disables the default behavior that the two halves of the curves are plotted in different colors for a one-sided alternative.col
String indicating the colour of the curves. Only relevant for single curves, multiple curves not plotted together (i.e. together = FALSE
) and multiple curves plotted together but with the option same_color
set to TRUE
.nrow
: (optional) Integer greater than 0 indicating the number of rows when together = FALSE
is specified for multiple estimates. Used in facet_wrap
in ggplot2.ncol
: (optional) Integer greater than 0 indicating the number of columns when together = FALSE
is specified for multiple estimates. Used in facet_wrap
in ggplot2.plot_p_limit
: Numerical value indicating the lower limit of the y-axis. Must be greater than 0 for a logarithmic scale (i.e. log_yaxis = TRUE
). The default is to omit plotting p-values smaller than 1 - 0.999 = 0.001.plot_counternull
: Logical. Indicating if the counternull should be plotted as a point. Only available for -value functions and s-value functions. Counternull values that are outside of the plotted functions are not shown.title
(optional): String containing a title for the plot.xlab
(optional): String indicating the label of the x-axis.ylab
(optional): String containing a title for the primary (left) y-axis.ylab_sec
(optional): String containing a title for the secondary (right) y-axis.inverted
Logical. Indicating the orientation of the P-value function (p_val
), S-value function (s_val
) and confidence distribution (cdf
). By default (i.e. inverted = FALSE
) small P-values are plotted at the bottom and large ones at the top. By setting inverted = TRUE
, the y-axis is invertedd. Ignored for confidence densities.x_scale
String indicating the scaling of the x-axis. The default is to scale the x-axis logarithmically if the transformation specified in trans
is “exp” (exponential) and linearly otherwise. The option linear
(can be abbreviated) forces a linear scaling and the option logarithm
(can be abbreviated) forces a logarithmic scaling.plot
Logical. Should a plot be created (TRUE
, the default) or not (FALSE
). FALSE
can be useful if users want to create their own plots. If FALSE
, no ggplot2 object is returned.estimate
, df
, tstat
.estimate
, df
, stderr
.estimate
, stderr
.estimate
, n
.The main function conf_dist()
returns five objects in a list:
res_frame
: A data frame containing the values used to construct the plot. It contains the following variables: values
contain the values of the effect (e.g. mean difference, odds ratio etc.), conf_dist
the values for the confidence distribution, conf_dens
the values for the confidence density, p_two
the values for the two-sided p-value function, p_one
the values for the one-sided p-value function, s_val
the S-value (surprisal) of the two-sided p-values, variable
the name of the estimate, hypothesis
indicating the alternative hypothesis if one-sided p-value functions were specified and counternull
containing the counternull values.conf_frame
: A data frame containing the confidence intervals for the specified confidence levels for all estimates.counternull_frame
: A data frame containing the counternull values for the specified null values (see Rosenthal & Rubin (1994) for more information about the counternull).point_est
: A data frame containing the point estimates for all estimates. The point estimates correspond to the mean, median or mode of the confidence density (see Xie & Singh (2013) for more information). Estimates are produced using numerical procedures: Increase the number of points n_values
for higher numerical precision.aucc_frame
: A data frame containing the estimated AUCC (area under the confidence curve). The AUCC is a measures of precision with higher values indicating a poorer precision compared to smaller values (see Berrar (2017)). It also provides the proportion of the AUCC that lies above the null value(s), if they are provided.plot
: A ggplot2 plot object (only returned if the option plot = TRUE
was specified).#-----------------------------------------------------------------------------
# T-Test
#-----------------------------------------------------------------------------
with(sleep, mean(extra[group == 1])) - with(sleep, mean(extra[group == 2]))
#> [1] -1.58
t.test(extra ~ group, data = sleep, var.equal = FALSE)
#>
#> Welch Two Sample t-test
#>
#> data: extra by group
#> t = -1.8608, df = 17.776, p-value = 0.07939
#> alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
#> 95 percent confidence interval:
#> -3.3654832 0.2054832
#> sample estimates:
#> mean in group 1 mean in group 2
#> 0.75 2.33
#-----------------------------------------------------------------------------
# Create p-value function
#-----------------------------------------------------------------------------
<- conf_dist(
res estimate = c(-1.58)
df = c(17.77647)
, tstat = c(-1.860813)
, type = "ttest"
, plot_type = "p_val"
, n_values = 1e4L
, # , est_names = c("")
conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0)
, trans = "identity"
, alternative = "two_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Mean difference (group 1 - group 2)"
, together = FALSE
, plot_p_limit = 1 - 0.999
, plot_counternull = TRUE
, x_scale = "line"
, plot = TRUE
, )
Because it’s difficult to see very small p-values in the graph, you can set the option log_yaxis = TRUE
so that p-values (i.e. the y-axes) below the value set in cut_logyaxis
will be plotted on a logarithmic scale. This will make it much easier to see small p-values but has the disadvantage of creating a “kink” in the p-value function which is a pure artifact and puts an undue emphasis on the specified cutoff.
#-----------------------------------------------------------------------------
# Model
#-----------------------------------------------------------------------------
<- lm(Infant.Mortality~Agriculture + Fertility + Examination, data = swiss)
mod
summary(mod)
#>
#> Call:
#> lm(formula = Infant.Mortality ~ Agriculture + Fertility + Examination,
#> data = swiss)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -8.5375 -1.4021 -0.0066 1.7381 5.9150
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 11.01896 4.47291 2.463 0.01784 *
#> Agriculture -0.02143 0.02394 -0.895 0.37569
#> Fertility 0.13115 0.04145 3.164 0.00285 **
#> Examination 0.04913 0.08351 0.588 0.55942
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.645 on 43 degrees of freedom
#> Multiple R-squared: 0.2291, Adjusted R-squared: 0.1753
#> F-statistic: 4.26 on 3 and 43 DF, p-value: 0.01014
#-----------------------------------------------------------------------------
# Create p-value function
#-----------------------------------------------------------------------------
<- conf_dist(
res estimate = c(-0.02143)
df = c(43)
, stderr = (0.02394)
, type = "linreg"
, plot_type = "p_val"
, n_values = 1e4L
, # , est_names = c("")
conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0)
, trans = "identity"
, alternative = "two_sided"
, log_yaxis = TRUE
, cut_logyaxis = 0.05
, xlab = "Coefficient Agriculture"
, xlim = c(-0.12, 0.065)
, together = FALSE
, plot_p_limit = 1 - 0.999
, plot_counternull = FALSE
, plot = TRUE
, )
<- conf_dist(
res estimate = c(-0.02143)
df = c(43)
, stderr = (0.02394)
, type = "linreg"
, plot_type = "cdf"
, n_values = 1e4L
, # , est_names = c("")
conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0)
, trans = "identity"
, alternative = "two_sided"
, # , log_yaxis = TRUE
# , cut_logyaxis = 0.05
xlab = "Coefficient Agriculture"
, xlim = c(-0.12, 0.065)
, together = FALSE
, col = "#08A9CF"
, # , plot_p_limit = 1 - 0.999
plot_counternull = FALSE
, )
The point where the confidence distribution is \(0.5\) is the median unbiased estimator (see Xie & Singh (2013) for a review and proofs).
<- conf_dist(
res estimate = c(0.13115, 0.04913)
df = c(43, 43)
, stderr = c(0.04145, 0.08351)
, type = "linreg"
, plot_type = "p_val"
, n_values = 1e4L
, est_names = c("Fertility", "Examination")
, conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0)
, trans = "identity"
, alternative = "two_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Regression coefficients"
, together = TRUE
, same_color = FALSE
, plot_p_limit = 1 - 0.999
, plot_counternull = FALSE
, inverted = FALSE
, )
<- conf_dist(
res estimate = c(0.13115, 0.04913)
df = c(43, 43)
, stderr = c(0.04145, 0.08351)
, type = "linreg"
, plot_type = "s_val"
, n_values = 1e4L
, est_names = c("Fertility", "Examination")
, conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0)
, trans = "identity"
, alternative = "two_sided"
, # , log_yaxis = TRUE
# , cut_logyaxis = 0.05
xlab = "Regression coefficients"
, together = TRUE
, plot_p_limit = 1 - 0.999
, plot_counternull = TRUE
, )
As of version 1.6.2, the package uses the exact distribution for Pearson’s correlation coefficient as described in a preprint by Gunnar Taraldsen (2020). The calculations make use of the Gaussian hypergeometric function (\(_2F_1\)). It also makes the calculations slower, depending on the value in n_values
.
#-----------------------------------------------------------------------------
# Calculate Pearson's correlation coefficient
#-----------------------------------------------------------------------------
cor.test(swiss$Fertility, swiss$Agriculture, alternative = "two.sided", method = "pearson")
#>
#> Pearson's product-moment correlation
#>
#> data: swiss$Fertility and swiss$Agriculture
#> t = 2.5316, df = 45, p-value = 0.01492
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#> 0.07334947 0.58130587
#> sample estimates:
#> cor
#> 0.3530792
#-----------------------------------------------------------------------------
# Create p-value function
#-----------------------------------------------------------------------------
<- conf_dist(
res estimate = c(0.3530792)
n = 47
, type = "pearson"
, plot_type = "p_val"
, n_values = 1e3L
, # , est_names = c("")
conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0)
, trans = "identity"
, alternative = "one_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Pearson correlation"
, together = TRUE
, plot_p_limit = 1 - 0.999
, plot_counternull = FALSE
, )
#-----------------------------------------------------------------------------
# Create p-value function
#-----------------------------------------------------------------------------
<- conf_dist(
res estimate = c(0.804037549)
stderr = c(0.331819298)
, type = "logreg"
, plot_type = "p_val"
, n_values = 1e4L
, est_names = c("GPA")
, conf_level = c(0.95, 0.90, 0.80)
, null_values = c(log(1)) # null value on the log-odds scale
, trans = "exp"
, alternative = "two_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Odds Ratio (GPA)"
, xlim = log(c(0.7, 5.2)) # axis limits on the log-odds scale
, together = FALSE
, plot_p_limit = 1 - 0.999
, plot_counternull = TRUE
, x_scale = "default"
, )
The p-value function (and thus the confidence intervals) are based on Wilson’s score interval and not the normal approximation. This means that the p-value function will never be outside the interval \([0, 1]\).
<- conf_dist(
res estimate = c(0.44)
n = c(50)
, type = "prop"
, plot_type = "p_val"
, n_values = 1e4L
, # , est_names = c("")
conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0.5)
, trans = "exp"
, alternative = "two_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Proportion"
, # , xlim = c(0.25, 0.65)
together = FALSE
, plot_p_limit = 1 - 0.999
, plot_counternull = TRUE
, x_scale = "default"
,
)#>
#> Transformation changed to identity.
<- conf_dist(
res estimate = c(68/100, 98/150)
n = c(100, 150)
, type = "propdiff"
, plot_type = "p_val"
, n_values = 1e4L
, conf_level = c(0.95, 0.90, 0.80)
, null_values = c(0)
, trans = "identity"
, alternative = "two_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Difference between proportions"
, together = FALSE
, plot_p_limit = 1 - 0.9999
, plot_counternull = FALSE
, )
The standard Wald interval can be modified in a simple manner to drastically improve its coverage probabilities. Simply add 1 to the number of successes and add 2 to the sample size for both proportions. Then proceed to calculate the Wald interval with these modified data. The point estimate for the difference between proportions is still calculated using the unmodified data. The function conf_dist
does not have a dedicaded type for this kind of estimator but as the Wald interval is based on the normal distribution, we can use type = general_z
to create the p-value function.
# First proportion
<- 8
x1 <- 40
n1
# Second proportion
<- 11
x2 <- 30
n2
# Apply the correction
<- (x1 + 1)/(n1 + 2)
p1hat <- (x2 + 1)/(n2 + 2)
p2hat
# The estimator (unmodified)
<- (x1/n1) - (x2/n2)
est0
# The modified estimator and its standard error using the correction
<- p1hat - p2hat
est <- sqrt(((p1hat*(1 - p1hat))/(n1 + 2)) + ((p2hat*(1 - p2hat))/(n2 + 2)))
se
<- conf_dist(
res estimate = c(est)
stderr = c(se)
, type = "general_z"
, plot_type = "p_val"
, n_values = 1e4L
, # , est_names = c("Estimate")
log_yaxis = FALSE
, cut_logyaxis = 0.05
, conf_level = c(0.95, 0.99)
, null_values = c(0)
, trans = "identity"
, alternative = "two_sided"
, xlab = "Difference of proportions"
, # , xlim = c(-0.75, 0.5)
together = FALSE
, plot_p_limit = 1 - 0.9999
, plot_counternull = FALSE
, )
The confidence density of a variance estimate is skewed. This means that the mean, mode and median of the confidence density will not be identical, in general.
# Simulate some data from a normal distribution
set.seed(142857)
<- var(x <- rnorm(20, 100, 15))
var_est
<- conf_dist(
res estimate = var_est
n = length(x)
, type = "var"
, plot_type = "pdf"
, n_values = 1e4L
, est_names = c("Variance")
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, conf_level = c(0.95)
, # , null_values = c(15^2, 18^2)
trans = "identity"
, alternative = "two_sided"
, xlab = "Variance"
, xlim = c(100, 900)
, together = TRUE
, plot_p_limit = 1 - 0.999
, plot_counternull = TRUE
, )
# Add vertical lines at the point estimates (mode, median, mean)
$plot + ggplot2::geom_vline(xintercept = as.numeric(res$point_est[1, 1:3]), linetype = 2, size = 1) res
Here, I’m going to replicate Figure 1 and Figure 2 in Bender et al. (2005). To do this, we first need to define the transformation that transforms the log-HR into the relative survival effect. By specifying trans = rse_fun
, the values are automatically transformed and plotted. In addition, we will plot the p-value function inverted so that the cusp is located at the bottom. First the p-value function:
# Define the transformation function and its inverse for the relative survival effect
<- function(x){
rse_fun 100*(1 - exp(x))
}
<- function(x){
rse_fun_inv log(1 - (x/100))
}
<- conf_dist(
res estimate = c(log(0.72))
stderr = (0.187618)
, type = "coxreg"
, plot_type = "p_val"
, n_values = 1e4L
, est_names = c("RSE")
, conf_level = c(0.95, 0.8, 0.5)
, null_values = rse_fun_inv(c(0))
, trans = "rse_fun"
, alternative = "two_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Relative survival effect (1 - HR%)"
, xlim = rse_fun_inv(c(-30, 60))
, together = FALSE
, plot_p_limit = 1 - 0.999
, plot_counternull = TRUE
, inverted = TRUE
, title = "Figure 1 in Bender et al. (2005)"
, x_scale = "default"
, )
rm(rse_fun, rse_fun_inv)
Now the confidence distribution (Figure 2):
# Define the transformation function and its inverse for the relative survival effect
<- function(x){
rse_fun 100*(1 - exp(-x))
}
<- function(x){
rse_fun_inv log(-(100)/(x - 100))
}
<- conf_dist(
res estimate = c(-log(0.72))
stderr = (0.187618)
, type = "coxreg"
, plot_type = "cdf"
, n_values = 1e4L
, est_names = c("RSE")
, conf_level = c(0.95, 0.883, 0.5)
, null_values = rse_fun_inv(c(0))
, trans = "rse_fun"
, alternative = "two_sided"
, log_yaxis = FALSE
, cut_logyaxis = 0.05
, xlab = "Relative survival effect (1 - HR%)"
, together = FALSE
, xlim = rse_fun_inv(c(-3, 60))
, plot_p_limit = 1 - 0.999
, plot_counternull = TRUE
, inverted = TRUE
, title = "Figure 2 in Bender et al. (2005)"
, )
rm(rse_fun, rse_fun_inv)
The AUCC is a scalar representing the area under the p-value function (see Berrar (2017)). Values close to 0 indicate a high precision while larger values indicate poorer precision. Multiple estimates can be compared by their AUCC (in the context of a meta-analysis for example). The AUCC is calculated numerically using trapezoidal integration on the untransformed p-value function. The estimate can be quite poor if few x-values are used (i.e. argument n_values
is low). If there are null values provided, the function will also return the proportion of the AUCC that lies above those nulls.
# Lungcancer dataset from the "meta" package
<- conf_dist(
res estimate = c(2.512, 2.298, 2.455, 2.255, 2.989, 1.59, 2.674) # Log-incidence rate ratio (IRR)
stderr = c(0.087, 0.127, 0.144, 0.153, 0.265, 0.318, 0.584) # Standard errors of the log-IRR
, type = "general_z"
, plot_type = "p_val"
, n_values = 1e4L
, est_names = c("U.S. Veterans", "Men in 9 States", "Canadian Veterans", "Men in 25 States", "British Doctors", "California Legion", "California Occupational") # Study names
, conf_level = c(0.95)
, null_values = c(log(1))
, trans = "exp"
, alternative = "two_sided"
, xlab = "Incidence rate ratio (IRR)"
, xlim = c(log(0.95), log(50))
, together = TRUE
, same_color = TRUE
, col = "#C977A2"
, plot_p_limit = 1 - 0.9999
, plot_counternull = FALSE
, inverted = FALSE
, )
# Print the AUCCs
print(res$aucc_frame, row.names = FALSE)
#> variable aucc null p_above_null
#> U.S. Veterans 0.1388319 0 1.0000000
#> Men in 9 States 0.2026627 0 1.0000000
#> Canadian Veterans 0.2297908 0 1.0000000
#> Men in 25 States 0.2441527 0 1.0000000
#> British Doctors 0.4228789 0 1.0000000
#> California Legion 0.5074546 0 0.9999999
#> California Occupational 0.9319293 0 0.9999994
Check out the concurve package that offers a similar functionality.
Bender R, Berg G, Zeeb H. (2005): Tutorial: using confidence curves in medical research. Biom J. 47(2): 237-47.
Berrar D (2017): Confidence Curves: an alternative to null hypothesis significance testing for the comparison of classifiers. Mach Learn 106:911-949.
Fraser D. A. S. (2019): The p-value function and statistical inference. Am Stat, 73:sup1, 135-147.
Greenland S (2019): Valid P-Values Behave Exactly as They Should: Some Misleading Criticisms of P-Values and Their Resolution with S-Values. Am Stat, 73sup1, 106-114.
Infanger D, Schmidt-Trucksäss A. (2019): P value functions: An underused method to present research results and to promote quantitative reasoning. Stat Med, 38, 4189-4197. doi: 10.1002/sim.8293.
Poole C. (1987a): Beyond the confidence interval. Am J Public Health. 77(2): 195-9.
Poole C. (1987b) Confidence intervals exclude nothing. Am J Public Health. 77(4): 492-3.
Rosenthal R, Rubin DB. (1994): The counternull value of an effect size: A new statistic. Psychol Sci. 5(6): 329-34.
Schweder T, Hjort NL. (2016): Confidence, likelihood, probability: statistical inference with confidence distributions. New York, NY: Cambridge University Press.
Xie M, Singh K, Strawderman WE. (2011): Confidence Distributions and a Unifying Framework for Meta-Analysis. J Am Stat Assoc 106(493): 320-33. doi: 10.1198/jasa.2011.tm09803.
Xie Mg, Singh K. (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A review. Internat Statist Rev. 81(1): 3-39.
#> R version 4.1.2 (2021-11-01)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19044)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=C LC_CTYPE=German_Switzerland.1252
#> [3] LC_MONETARY=German_Switzerland.1252 LC_NUMERIC=C
#> [5] LC_TIME=German_Switzerland.1252
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] pvaluefunctions_1.6.2
#>
#> loaded via a namespace (and not attached):
#> [1] pracma_2.3.3 RColorBrewer_1.1-2 highr_0.9 bslib_0.3.1
#> [5] compiler_4.1.2 pillar_1.6.4 jquerylib_0.1.4 tools_4.1.2
#> [9] digest_0.6.28 jsonlite_1.7.2 evaluate_0.14 lifecycle_1.0.1
#> [13] tibble_3.1.6 gtable_0.3.0 pkgconfig_2.0.3 rlang_0.4.12
#> [17] DBI_1.1.1 parallel_4.1.2 yaml_2.2.1 xfun_0.28
#> [21] fastmap_1.1.0 stringr_1.4.0 dplyr_1.0.7 knitr_1.36
#> [25] generics_0.1.1 sass_0.4.0 vctrs_0.3.8 grid_4.1.2
#> [29] tidyselect_1.1.1 glue_1.5.0 R6_2.5.1 fansi_0.5.0
#> [33] rmarkdown_2.11 zipfR_0.6-70 farver_2.1.0 ggplot2_3.3.5
#> [37] purrr_0.3.4 magrittr_2.0.1 scales_1.1.1 htmltools_0.5.2
#> [41] ellipsis_0.3.2 assertthat_0.2.1 colorspace_2.0-2 utf8_1.2.2
#> [45] stringi_1.7.6 gsl_2.1-7.1 munsell_0.5.0 crayon_1.4.2
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.