
Package ‘quadVAR’
February 11, 2025

Title Quadratic Vector Autoregression

Version 0.1.2

Description Estimate quadratic vector autoregression models with the
strong hierarchy using the Regularization Algorithm under Marginality
Principle (RAMP) by Hao et al. (2018)
<doi:10.1080/01621459.2016.1264956>, compare the performance with
linear models, and construct networks with partial derivatives.

License GPL (>= 3)

URL https://github.com/Sciurus365/quadVAR,

https://sciurus365.github.io/quadVAR/

BugReports https://github.com/Sciurus365/quadVAR/issues

Imports cli, dplyr, ggplot2, magrittr, ncvreg, qgraph, RAMP, rlang,
shiny, shinythemes, stats, stringr, tibble, tidyr

Suggests nonlinearTseries, remotes, SIS, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Jingmeng Cui [aut, cre] (<https://orcid.org/0000-0003-3421-8457>)

Maintainer Jingmeng Cui <jingmeng.cui@outlook.com>

Repository CRAN

Date/Publication 2025-02-11 17:30:05 UTC

Contents
block_cv . 2
compare_4_emo . 3
find_index . 4
get_adj_mat . 4
linear_quadVAR_network . 5

1

https://doi.org/10.1080/01621459.2016.1264956
https://github.com/Sciurus365/quadVAR
https://sciurus365.github.io/quadVAR/
https://github.com/Sciurus365/quadVAR/issues
https://orcid.org/0000-0003-3421-8457

2 block_cv

partial_plot . 6
predict.quadVAR . 7
quadVAR . 8
quadVAR_to_dyn_eqns . 11
sim_4_emo . 11
true_model_4_emo . 12
tune.fit . 13

Index 17

block_cv Use Block Cross-Validation to Evaluate Models

Description

This function uses block cross-validation to evaluate a model. The data is split into blocks, and the
model is fit on all but one block and evaluated on the remaining block. This process is repeated for
each block, and the mean squared error is calculated for each model.

Usage

block_cv(
data,
dayvar = NULL,
model,
block = 10,
lowerbound = -Inf,
upperbound = Inf,
detail = FALSE,
metric = "MSE"

)

Arguments

data A data frame.
dayvar A character string. The name of the variable that represents the day. This is

required because this function use dayvar to specify the time point before the
test block should not be used to predict the time point after the test block. If
dayvar is not specified, in the original dataset, then please add one constant
variable as dayvar, and specify it both here and in the function passed to model.

model A function. The model to be evaluated. The function should take a data frame as
its first argument and return a quadVAR object. It can be, for example, function(x)
quadVAR(x, vars = c("var1", "var2"))

block An integer. The number of blocks to use in the cross-validation. The default is
10.

lowerbound A numeric value or a vector with the same length as the number of variables that
specifies the lower bound of the predicted values. If the predicted value is less
than this value, it will be replaced by this value. The default value is -Inf.

compare_4_emo 3

upperbound A numeric value or a vector with the same length as the number of variables
that specifies the upper bound of the predicted values. If the predicted value is
greater than this value, it will be replaced by this value. The default value is Inf.

detail A logical. If TRUE, the function will return the predictions for each model. The
default is FALSE, which only returns the mean squared error for each model.

metric A character vector. The metric to be used to evaluate the model. The default is
"MSE", which calculates the mean squared error. The other option is "MAE",
which calculates the mean absolute error. Only effective when detail = FALSE.

Value

Depending on detail. If FALSE, it returns a list of mean squared errors for each model. If TRUE,
it returns a list with the mean squared errors for each model, the true data, and the predictions for
each model.

compare_4_emo Compare estimated model with true model for 4-emotion model

Description

This function compares the estimated model with the true model for the 4-emotion model. It prints
out the estimated coefficients and the true coefficients for the main effects and interaction effects.

Usage

compare_4_emo(model, silent = FALSE)

Arguments

model The estimated model, using data simulated from sim_4_emo(), and model esti-
mated using quadVAR().

silent Whether to print out the results.

Value

Silently return data frame with the estimated coefficients and the true coefficients for the main
effects and interaction effects, while printing out the results rounded to two digits if silent =
FALSE.

4 get_adj_mat

find_index Find index of data that satisfies certain conditions

Description

Find index of data that satisfies certain conditions

Usage

find_index(data, dayvar, beepvar)

Arguments

data A data frame.

dayvar String indicating assessment day. Adding this argument makes sure that the first
measurement of a day is not regressed on the last measurement of the previous
day. IMPORTANT: only add this if the data has multiple observations per day.

beepvar Optional string indicating assessment beep per day. Adding this argument will
cause non-consecutive beeps to be treated as missing!

Value

A list of two vectors of indices.

get_adj_mat Extract the adjacency matrix from a quadVAR object.

Description

Extract the adjacency matrix from a quadVAR object.

Usage

get_adj_mat(model, value)

Arguments

model A quadVAR object.

value The actual_value in the output of linear_quadVAR_network().

Value

An adjacency matrix.

linear_quadVAR_network 5

linear_quadVAR_network

Linearize a quadVAR object to produce a network.

Description

A quadVAR object is nonlinear, which means that the relationship between variables are not the
same across different values of the variables. This function linearizes a quadVAR object by specify-
ing the values of the variables that the linearized model will be based on, to facilitate interpretation.
The linearized model is then expressed in an adjacency matrix, which can be used to produce a
network.

Usage

linear_quadVAR_network(model, value = NULL, value_standardized = TRUE)

S3 method for class 'linear_quadVAR_network'
plot(x, interactive = FALSE, ...)

Arguments

model A quadVAR object.

value A numeric vector of length 1 or the same as the number of nodes, that specifies
the values of the variables that the linearized model will be based on. If the
length is 1, the same value will be used for all variables. The default value is
NULL, in which case the value will be set to 0 in calculation, which means (if
value_standardized = TRUE) the linearized model will be based on the mean
values of all variables.

value_standardized

A logical value that specifies whether the input value is standardized or not.
If TRUE, the input value will be regarded as standardized value, i.e., mean +
value * sd (e.g., 0 is the mean, 1 is mean + sd, ...). If FALSE, the input value
will regarded as in the raw scale of the input data. If the raw dataset was already
standardized, this parameter does not have an effect. The default value is TRUE.

x A linear_quadVAR_network object.

interactive Whether to produce an interactive plot using shiny (in which the user can
change the values of variables interactively) or a static plot using qgraph::qgraph().
Default is FALSE.

... Other arguments passed to qgraph::qgraph().

Value

A linear_quadVAR_network with the following elements:

• adj_mat: the adjacency matrix of the linearized network.

• standardized_value: the standardized value that the linearized model is based on.

6 partial_plot

• actual_value: the value in the raw scale of the input data.

• model: the input quadVAR object.

• value_standardized: the same as the input.

Methods (by generic)

• plot(linear_quadVAR_network): Produce a plot for the linearized quadVAR model. If
interactive = FALSE, the output will be a qgraph object, which can be further used to calcu-
late centrality measures using, e.g., qgraph::centrality() and qgraph::centralityPlot().

References

The idea of this linearization function is inspired by Kroc, E., & Olvera Astivia, O. L. (2023).
The case for the curve: Parametric regression with second- and third-order polynomial functions of
predictors should be routine. Psychological Methods. https://doi.org/10.1037/met0000629

partial_plot Make a partial plot of a variable in a model This function takes a
quadVAR model as input, and returns a plot of the partial effect of a
variable on the dependent variable (controlling all other variables and
the intercept), for higher and lower levels of the moderator variable
split by the median.

Description

Make a partial plot of a variable in a model This function takes a quadVAR model as input, and
returns a plot of the partial effect of a variable on the dependent variable (controlling all other vari-
ables and the intercept), for higher and lower levels of the moderator variable split by the median.

Usage

partial_plot(model, y, x, moderator)

Arguments

model A quadVAR model

y The dependent variable

x The variable for which the partial effect is plotted

moderator The moderator variable

Value

A ggplot object

predict.quadVAR 7

predict.quadVAR Predict the values of the dependent variables using the quadVAR
model

Description

Predict the values of the dependent variables using the quadVAR model

Usage

S3 method for class 'quadVAR'
predict(
object,
newdata = NULL,
donotpredict = NULL,
lowerbound = -Inf,
upperbound = Inf,
with_const = FALSE,
...

)

Arguments

object A quadVAR object.

newdata A data frame or tibble containing at least the values of the independent variables,
dayvar, and beepvar (if used in model estimation). If NULL, the original data
used to fit the model will be used.

donotpredict NOT IMPLEMENTED YET! A character vector of the model names that are
not used for prediction. Possible options include "AR", "VAR", "VAR_full",
"quadVAR_full", "all_others", with NULL as the default. If set "all_others",
then only a quadVAR model will be estimated. For datasets with large number of
variables, you may set this parameter to "quadVAR_full" to save time.

lowerbound A numeric value or a vector with the same length as the number of variables that
specifies the lower bound of the predicted values. If the predicted value is less
than this value, it will be replaced by this value. The default value is -Inf.

upperbound A numeric value or a vector with the same length as the number of variables
that specifies the upper bound of the predicted values. If the predicted value is
greater than this value, it will be replaced by this value. The default value is Inf.

with_const A logical value indicating whether to include the constant variables in the pre-
diction. Those variables were automatically excluded in the estimation proce-
dure. The default value is FALSE. When set to TRUE, the lowerbound and
upperbound should be a vector with the same length as the number of variables
in the model, including the constant variables. The values of the constant vari-
ables will be ignored though because their predicted values are always the same,
which is the constant value in the input data.

... Other arguments passed to the RAMP::predict.RAMP() function.

8 quadVAR

Value

A data frame or tibble containing the predicted values of the dependent variables. If a value cannot
be predicted (e.g., because the corresponding previous time point is not in the data), it will be NA.

quadVAR Estimate lag-1 quadratic vector autoregression models

Description

This function estimate regularized nonlinear quadratic vector autoregression models with strong
hierarchy using the RAMP::RAMP() algorithm, and also compare it with the linear AR, regularized
VAR, and unregularized (full) VAR and quadratic VAR models.

Usage

quadVAR(
data,
vars,
dayvar = NULL,
beepvar = NULL,
penalty = "LASSO",
tune = "EBIC",
donotestimate = NULL,
SIS_options = list(),
RAMP_options = list()

)

S3 method for class 'quadVAR'
print(x, ...)

S3 method for class 'quadVAR'
summary(object, ...)

S3 method for class 'quadVAR'
coef(object, ...)

S3 method for class 'coef_quadVAR'
print(
x,
use_actual_names = TRUE,
abbr = FALSE,
minlength = 3,
omit_zero = TRUE,
digits = 2,
row.names = FALSE,
...

quadVAR 9

)

S3 method for class 'quadVAR'
plot(x, value = NULL, value_standardized = TRUE, interactive = FALSE, ...)

Arguments

data A tibble, data.frame, or matrix that represents a time series of vectors, with
each row as a time step.

vars A character vector of the variable names used in the model.

dayvar String indicating assessment day. Adding this argument makes sure that the first
measurement of a day is not regressed on the last measurement of the previous
day. IMPORTANT: only add this if the data has multiple observations per day.

beepvar Optional string indicating assessment beep per day. Adding this argument will
cause non-consecutive beeps to be treated as missing!

penalty The penalty used for the linear and regularized VAR models. Possible options
include "LASSO", "SCAD", "MCP", with "LASSO" as the default.

tune Tuning parameter selection method. Possible options include "AIC", "BIC",
"EBIC", with "EBIC" as the default.

donotestimate A character vector of the model names that are not estimated. Possible op-
tions include, "NULL_model", "AR", "VAR", "VAR_full", "quadVAR_full",
"all_others", with NULL as the default. If set "all_others", then only a quadVAR
model will be estimated. For datasets with large number of variables, you may
set this parameter to "quadVAR_full" to save time.

SIS_options A list of other parameters for the SIS::tune.fit() function. This is used for
the regularized VAR models.

RAMP_options A list of other parameters for the RAMP::RAMP() function. This is used for the
nonlinear quadratic VAR model.

... For print.quadVAR, additional arguments passed to print.coef_quadVAR().
For print.coef_quadVAR, additional arguments passed to print.data.frame().

object, x An quadVAR object. (For print.coef_quadVAR, an coef_quadVAR object re-
turned by coef.quadVAR().)

use_actual_names

Logical. If TRUE, the actual variable names are used in the output. If FALSE, the
names "X1", "X2", etc., are used in the output. Default is TRUE.

abbr Logical. If TRUE, the output is abbreviated. Default is FALSE.

minlength the minimum length of the abbreviations.

omit_zero Logical. If TRUE, the coefficients that are zero are omitted. Default is FALSE.

digits the minimum number of significant digits to be used: see print.default.

row.names logical (or character vector), indicating whether (or what) row names should be
printed.

value A numeric vector of length 1 or the same as the number of nodes, that specifies
the values of the variables that the linearized model will be based on. If the
length is 1, the same value will be used for all variables. The default value is

10 quadVAR

NULL, in which case the value will be set to 0 in calculation, which means (if
value_standardized = TRUE) the linearized model will be based on the mean
values of all variables.

value_standardized

A logical value that specifies whether the input value is standardized or not.
If TRUE, the input value will be regarded as standardized value, i.e., mean +
value * sd (e.g., 0 is the mean, 1 is mean + sd, ...). If FALSE, the input value
will regarded as in the raw scale of the input data. If the raw dataset was already
standardized, this parameter does not have an effect. The default value is TRUE.

interactive Whether to produce an interactive plot using shiny (in which the user can
change the values of variables interactively) or a static plot using qgraph::qgraph().
Default is FALSE.

Value

An quadVAR object that contains the following elements:

• NULL_model: A list of NULL models for each variable.

• AR_model: A list of linear AR models for each variable.

• VAR_model: A list of regularized VAR models for each variable.

• VAR_full_model: A list of unregularized (full) VAR models for each variable.

• quadVAR_model: A list of regularized nonlinear quadratic VAR models for each variable.

• quadVAR_full_model: A list of unregularized (full) nonlinear quadratic VAR models for each
variable.

• data,vars,penalty,tune,SIS_options,RAMP_options: The input arguments.

• data_x,data_y: The data directly used for modeling.

Methods (by generic)

• print(quadVAR): Print the coefficients for a quadVAR object. See coef.quadVAR() and
print.coef_quadVAR() for details.

• summary(quadVAR): Summary of a quadVAR object. Different IC definitions used by dif-
ferent packages (which differ by a constant) are unified to make them comparable to each
other.

• coef(quadVAR): Extract the coefficients from a quadVAR object.

• plot(quadVAR): Produce a plot for the linearized quadVAR model. Equivalent to first produce
a linear quadVAR network using linear_quadVAR_network(), then use plot.linear_quadVAR_network().

Functions

• print(coef_quadVAR): Print the coefficients from a quadVAR object.

See Also

linear_quadVAR_network()

quadVAR_to_dyn_eqns 11

Examples

set.seed(1614)
data <- sim_4_emo(time = 200, sd = 1)
plot(data[, "x1"])
qV1 <- quadVAR(data, vars = c("x1", "x2", "x3", "x4"))
summary(qV1)
coef(qV1)
plot(qV1)
Compare the estimation with the true model
plot(true_model_4_emo())
plot(qV1, value = 0, value_standardized = FALSE, layout = plot(true_model_4_emo())$layout)

quadVAR_to_dyn_eqns Transform a quadVAR object to a list of dynamic equations.

Description

Transform a quadVAR object to a list of dynamic equations.

Usage

quadVAR_to_dyn_eqns(model, minus_self = TRUE)

Arguments

model A quadVAR object.

minus_self Whether to subtract the term itself from the equation. If TRUE, the equation will
be in the form of (0 =) ... - X1; if FALSE, the equation will be in the form of
(X1 =)....

Value

A list of dynamic equations in characters. You can also use rlang::parse_expr() to parse them
into expressions.

sim_4_emo Simulate a 4-emotion model

Description

This function simulates a 4-emotion model which is nonlinear, bistable, discrete, and (almost) cen-
tered to zero. Adapted from the model described by van de Leemput et al. (2014).

Usage

sim_4_emo(time = 200, init = c(1.36, 1.36, 4.89, 4.89), sd = 1)

12 true_model_4_emo

Arguments

time The number of time steps to simulate.

init A vector of initial values for the four variables. Default is c(1.36, 1.36, 4.89,
4.89), which is one of the stable states of the model.

sd The standard deviation of the noise.

Value

A matrix with the simulated data.

References

van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P.,
... & Scheffer, M. (2014). Critical slowing down as early warning for the onset and termination of
depression. Proceedings of the National Academy of Sciences, 111(1), 87-92.

See Also

true_model_4_emo(), compare_4_emo(), quadVAR()

true_model_4_emo True model for 4-emotion model

Description

This function generate the true model for the 4-emotion model. It can used to compare the estimated
model with the true model, or to plot the true model.

Usage

true_model_4_emo(...)

S3 method for class 'true_model_4_emo'
coef(object, ...)

S3 method for class 'true_model_4_emo'
print(x, which = NULL, ...)

Arguments

... Not in use.

object A true_model_4_emo object.

x A true_model_4_emo object.

which Which model to print out. There are four models in total, corresponding to the
four variables.

tune.fit 13

Value

A true_model_4_emo object.

NULL, but prints out the true model.

Methods (by generic)

• coef(true_model_4_emo): This function returns the coefficients for the 4-emotion model.
It is also used in other functions to generate the linearized version of the true model and to
make plots. It returns a list of coefficients for the 4-emotion model, in the same format as
coef.quadVAR()

• print(true_model_4_emo): This function prints out the true model for the 4-emotion model
in the same format as RAMP::RAMP(), to help users to compare the true model and the esti-
mated model.

See Also

true_model_4_emo(), compare_4_emo(), quadVAR()

Examples

coef(true_model_4_emo())
plot(true_model_4_emo())

if (interactive()) {
This code will only run in an interactive session
plot(true_model_4_emo(), interactive = TRUE)

}

tune.fit Using the glmnet and ncvreg packages, fits a Generalized Linear
Model or Cox Proportional Hazards Model using various methods for
choosing the regularization parameter λ

Description

This function is modified from SIS::tune.fit(). It is used to tune the regularization parameter
for the regularized VAR models. This wrapper is used because of the following reasons.

1. The original SIS::tune.fit() function does not return the value of the information criteria
that we would like to use.

2. We use the ncvreg package exclusively (so we removed the code using the glmnet package).
This is to make the result more consistent, and also because the ncvreg package has better
support for the calculation of information criteria.

3. We also removed the generalized linear model (GLM) option, and the cross-validation option
because we do not use them.

4. We use stats::AIC() and stats::BIC() instead of the ones using SIS:::loglik() to make the cal-
culation methods more consistent.

5. We added ... to allow the user to pass additional arguments to the ncvreg::ncvreg() function.

14 tune.fit

Usage

tune.fit(
x,
y,
family = "gaussian",
penalty = c("SCAD", "MCP", "lasso"),
concavity.parameter = switch(penalty, SCAD = 3.7, 3),
tune = c("aic", "bic", "ebic"),
type.measure = c("deviance", "class", "auc", "mse", "mae"),
gamma.ebic = 1,
...

)

Arguments

x The design matrix, of dimensions n * p, without an intercept. Each row is an
observation vector.

y The response vector of dimension n * 1. Quantitative for family='gaussian',
non-negative counts for family='poisson', binary (0-1) for family='binomial'.
For family='cox', y should be an object of class Surv, as provided by the func-
tion Surv() in the package survival.

family Response type (see above).

penalty The penalty to be applied in the regularized likelihood subproblems. ’SCAD’
(the default), ’MCP’, or ’lasso’ are provided.

concavity.parameter

The tuning parameter used to adjust the concavity of the SCAD/MCP penalty.
Default is 3.7 for SCAD and 3 for MCP.

tune Method for selecting the regularization parameter along the solution path of
the penalized likelihood problem. Options to provide a final model include
tune='cv', tune='aic', tune='bic', and tune='ebic'. See references at
the end for details.

type.measure Loss to use for cross-validation. Currently five options, not all available for all
models. The default is type.measure='deviance', which uses squared-error
for gaussian models (also equivalent to type.measure='mse' in this case), de-
viance for logistic and poisson regression, and partial-likelihood for the Cox
model. Both type.measure='class' and type.measure='auc' apply only
to logistic regression and give misclassification error and area under the ROC
curve, respectively. type.measure='mse' or type.measure='mae' (mean ab-
solute error) can be used by all models except the 'cox'; they measure the devia-
tion from the fitted mean to the response. For penalty='SCAD' and penalty='MCP',
only type.measure='deviance' is available.

gamma.ebic Specifies the parameter in the Extended BIC criterion penalizing the size of the
corresponding model space. The default is gamma.ebic=1. See references at the
end for details.

... additional arguments to be passed to the ncvreg::ncvreg() function.

tune.fit 15

Details

Original description from SIS::tune.fit():

This function fits a generalized linear model or a Cox proportional hazards model via penalized
maximum likelihood, with available penalties as indicated in the glmnet and ncvreg packages.
Instead of providing the whole regularization solution path, the function returns the solution at a
unique value of λ, the one optimizing the criterion specified in tune.

Value

Returns an object with

ix The vector of indices of the nonzero coefficients selected by the maximum pe-
nalized likelihood procedure with tune as the method for choosing the regular-
ization parameter.

a0 The intercept of the final model selected by tune.

beta The vector of coefficients of the final model selected by tune.

fit The fitted penalized regression object.

lambda The corresponding lambda in the final model.

lambda.ind The index on the solution path for the final model.

Author(s)

Jianqing Fan, Yang Feng, Diego Franco Saldana, Richard Samworth, and Yichao Wu

References

Jerome Friedman and Trevor Hastie and Rob Tibshirani (2010) Regularization Paths for Generalized
Linear Models Via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Noah Simon and Jerome Friedman and Trevor Hastie and Rob Tibshirani (2011) Regularization
Paths for Cox’s Proportional Hazards Model Via Coordinate Descent. Journal of Statistical Soft-
ware, 39(5), 1-13.

Patrick Breheny and Jian Huang (2011) Coordiante Descent Algorithms for Nonconvex Penalized
Regression, with Applications to Biological Feature Selection. The Annals of Applied Statistics, 5,
232-253.

Hirotogu Akaike (1973) Information Theory and an Extension of the Maximum Likelihood Princi-
ple. In Proceedings of the 2nd International Symposium on Information Theory, BN Petrov and F
Csaki (eds.), 267-281.

Gideon Schwarz (1978) Estimating the Dimension of a Model. The Annals of Statistics, 6, 461-464.

Jiahua Chen and Zehua Chen (2008) Extended Bayesian Information Criteria for Model Selection
with Large Model Spaces. Biometrika, 95, 759-771.

16 tune.fit

Examples

set.seed(0)
data("leukemia.train", package = "SIS")
y.train <- leukemia.train[, dim(leukemia.train)[2]]
x.train <- as.matrix(leukemia.train[, -dim(leukemia.train)[2]])
x.train <- SIS::standardize(x.train)
model <- tune.fit(x.train[, 1:3500], y.train, family = "binomial", tune = "bic")
model$ix
model$a0
model$beta

Index

block_cv, 2

coef.quadVAR (quadVAR), 8
coef.quadVAR(), 9, 10, 13
coef.true_model_4_emo

(true_model_4_emo), 12
compare_4_emo, 3
compare_4_emo(), 12, 13

find_index, 4

get_adj_mat, 4

linear_quadVAR_network, 5
linear_quadVAR_network(), 4, 10

partial_plot, 6
plot.linear_quadVAR_network

(linear_quadVAR_network), 5
plot.linear_quadVAR_network(), 10
plot.quadVAR (quadVAR), 8
predict.quadVAR, 7
print.coef_quadVAR (quadVAR), 8
print.coef_quadVAR(), 9, 10
print.data.frame(), 9
print.default, 9
print.quadVAR (quadVAR), 8
print.true_model_4_emo

(true_model_4_emo), 12

qgraph::centrality(), 6
qgraph::centralityPlot(), 6
qgraph::qgraph(), 5, 10
quadVAR, 8
quadVAR(), 3, 12, 13
quadVAR_to_dyn_eqns, 11

RAMP::predict.RAMP(), 7
RAMP::RAMP(), 8, 9, 13
rlang::parse_expr(), 11

sim_4_emo, 11
sim_4_emo(), 3
SIS::tune.fit(), 9, 13, 15
summary.quadVAR (quadVAR), 8

true_model_4_emo, 12
true_model_4_emo(), 12, 13
tune.fit, 13

17

	block_cv
	compare_4_emo
	find_index
	get_adj_mat
	linear_quadVAR_network
	partial_plot
	predict.quadVAR
	quadVAR
	quadVAR_to_dyn_eqns
	sim_4_emo
	true_model_4_emo
	tune.fit
	Index

