The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The purpose of the package queuecomputer is to compute,
deterministically, the output of a queue network given the arrival and
service times for all customers. The most important functions are
queue_step
, lag_step
and
wait_step
.
The first argument to the functions queue_step
,
lag_step
and wait_step
is a vector of arrival
times. For example:
library(queuecomputer)
library(dplyr)
##
## Vedhæfter pakke: 'dplyr'
## De følgende objekter er maskerede fra 'package:stats':
##
## filter, lag
## De følgende objekter er maskerede fra 'package:base':
##
## intersect, setdiff, setequal, union
<- cumsum(rexp(100))
arrivals
head(arrivals)
## [1] 1.177217 2.548002 2.633025 4.583521 6.300688 6.953988
<- rexp(100)
service
<- queue_step(arrivals = arrivals, service = service)
departures
str(departures,1)
## List of 7
## $ departures : num [1:100] 2.45 2.93 3.7 5.4 7.07 ...
## $ server : int [1:100] 1 1 1 1 1 1 1 1 1 1 ...
## $ departures_df : tibble [100 x 6] (S3: tbl_df/tbl/data.frame)
## $ queuelength_df :'data.frame': 201 obs. of 2 variables:
## $ systemlength_df:'data.frame': 201 obs. of 2 variables:
## $ servers_input : num 1
## $ state : num 101
## - attr(*, "class")= chr [1:2] "queue_list" "list"
The resourcing schedule is specified with either a non-zero natural
number, a server.stepfun
or a server.list
object. Use a non-zero natural number when the number of servers does
not change over time. The server.stepfun
specifies a step
function to indicate how many servers are available throughout the day.
The computation speed for queue_step()
is much faster when
using a server.stepfun
rather than a
server.list
input for the servers
argument.
We create a server.stepfun
object with the
as.server.stepfun
function.
# Zero servers available before time 10
# One server available between time 10 and time 50
# Three servers available between time 50 and time 100
# One server available from time 100 onwards
<- as.server.stepfun(c(10,50,100), c(0, 1, 3, 1))
resource_schedule
resource_schedule
## $x
## [1] 10 50 100
##
## $y
## [1] 0 1 3 1
##
## attr(,"class")
## [1] "server.stepfun" "list"
<- queue_step(arrivals = arrivals, service = service, servers = resource_schedule)
departures
str(departures,1)
## List of 7
## $ departures : num [1:100] 11.3 11.7 12.4 13.2 14 ...
## $ server : int [1:100] 1 1 1 1 1 1 1 1 1 1 ...
## $ departures_df : tibble [100 x 6] (S3: tbl_df/tbl/data.frame)
## $ queuelength_df :'data.frame': 201 obs. of 2 variables:
## $ systemlength_df:'data.frame': 201 obs. of 2 variables:
## $ servers_input :List of 2
## ..- attr(*, "class")= chr [1:2] "server.stepfun" "list"
## $ state : num [1:3] 93.8 91.6 90.8
## - attr(*, "class")= chr [1:2] "queue_list" "list"
The server.list
object is a list of step functions which
represent each server, the range is \(\{0,1\}\), where 0 represents unavailable
and 1 represents available and the knots represent the times where
availability changes.
The as.server.list
function is used to create a
server.list
object.
# Server 1 is available before time 10.
# Server 2 is available between time 15 and time 30.
# Server 3 is available after time 10.
as.server.list(list(10, c(15,30), 10), c(1,0,0))
## [[1]]
## Step function
## Call: stats::stepfun(times[[i]], y)
## x[1:1] = 10
## 2 plateau levels = 1, 0
##
## [[2]]
## Step function
## Call: stats::stepfun(times[[i]], y)
## x[1:2] = 15, 30
## 3 plateau levels = 0, 1, 0
##
## [[3]]
## Step function
## Call: stats::stepfun(times[[i]], y)
## x[1:1] = 10
## 2 plateau levels = 0, 1
##
## attr(,"class")
## [1] "list" "server.list"
It is simple to set up a chain of queueing elements with
queuecomputer
. Suppose passengers must walk to a queue,
then wait for service and then wait for their bags.
library(queuecomputer)
library(dplyr)
set.seed(500)
<- 100
n
<- cumsum(rexp(n))
arrivals <- rexp(n, 0.8)
service_l <- rexp(n, 0.5)
service_q <- cumsum(rexp(n, 0.8))
arrivals_b
# The queue elements can be computed one by one.
<- lag_step(arrivals, service_l)
departures_1 <- queue(departures_1, service = service_q, servers = 2)
departures_2 <- wait_step(departures_2, arrivals_b)
departures_3
# Or the queue elements can be chained together with the %>% operator.
<- lag_step(arrivals, service_l) %>% queue_step(service = service_q, servers = 2) %>% wait_step(arrivals_b)
departures
all(departures == departures_3)
## [1] TRUE
# Plot densities for this tandem queueing network
<- rainbow(4)
colours plot(density(arrivals, from = 0),
col = colours[1], xlim = c(0, 220), ylim = c(0, 0.015),
main = "Density plot")
lines(density(departures_1, from = 0), col = colours[2])
lines(density(departures_2, from = 0), col = colours[3])
lines(density(departures_3, from = 0), col = colours[4])
legend(150,0.012, legend = c("Start walk",
"Finish walk",
"Finish service",
"Pick up bag"),
col = colours, lwd = 1, cex = 0.8
)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.