The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Deduplication using reclin2

Jan van der Laan

We are going to work with the dataset town_name included in the package. The dataset contains a collection of town names as observed in administrative dataset. The first column name contains the names as observed. The second column official_name the official town name. We are going to assume that the second column is not available (or only for a part of the observations). The goal is to recode the 584 town names into a smaller set of town names knowing that most of the observed town names are actually misspelled versions of a smaller set of town names. We could also have solved the problem differently by linking the observed town names to a dataset containing all official town names. Often cleaning up these kind of misspellings is a first step in an actual linkage process. By first cleaning up the town names, subsequent use of the variable is easier and can lead to better quality linkage.

> library(reclin2)
Loading required package: data.table
 
> data(town_names)
> head(town_names)
                name official_name
1       alblasserdam  Alblasserdam
2          amsterdam     Amsterdam
3     amsterdam-z.o.     Amsterdam
4 amsterdam-zuidoost     Amsterdam
5      amsterdam z-o     Amsterdam
6     amsterdam z.o.     Amsterdam

When performing deduplication we will link a dataset to itself and will try to link different records belonging to the same object. When a dataset to itself, it is not necessary to both compare record i to j and j to i and we certainly do not want to compare a record to itself. The option deduplication of the pair_ functions makes sure that only the needed pairs are generated. This is a small dataset so we can easily generate all pairs:

> pairs <- pair(town_names, deduplication = TRUE)
> print(pairs)
  First data set:  584 records
  Second data set: 584 records
  Total number of pairs: 170 236 pairs

Key: <.x, .y>
           .x    .y
        <int> <int>
     1:     1     2
     2:     1     3
     3:     1     4
     4:     1     5
     5:     1     6
    ---            
170232:   581   583
170233:   581   584
170234:   582   583
170235:   582   584
170236:   583   584

We will compare the records on name and use a string similarity function.

> compare_pairs(pairs, on = "name", 
+   comparators = list(cmp_jarowinkler()), 
+   inplace = TRUE)
> print(pairs)
  First data set:  584 records
  Second data set: 584 records
  Total number of pairs: 170 236 pairs

Key: <.x, .y>
           .x    .y      name
        <int> <int>     <num>
     1:     1     2 0.6679894
     2:     1     3 0.5753968
     3:     1     4 0.5383598
     4:     1     5 0.5882173
     5:     1     6 0.5753968
    ---                      
170232:   581   583 0.5219298
170233:   581   584 0.5228070
170234:   582   583 0.5351852
170235:   582   584 0.7092593
170236:   583   584 0.9296296

Now comes the difficult part: selecting a threshold. The problem is that it is not really possible to say beforehand what an appropriate threshold is. That depends on the exact problem and also depends on the number of different objects that are expected. To explain that, first a short explanation how the deduplicate_equivalence function that we are going to use later works. Let’s assume we have two actual town names and using our string similarity function we select pairs that differ one letter from each other, so we end up with the following set of pairs as an example

rotterdam -> rottrdam
rotterdam -> rotterdm
rotterdm -> rottrdm
rtterdam -> rotterdam
amsterdam -> amstrdam
amstrdam -> amstdam
amsterdm -> amsterdam

That means that we are saying that rotterdam is the same object as rottrdam which is the same object as rottrdm. Therefore, rotterdam and rottrdm are the same object although we didn’t select a pair rotterdam -> rottrdm. So all names rotterdam, rottrdam, rotterdm, rottrdm and rtterdam are going to be in one class. When the number of misspelled names increases and when the number of actual town names increases, the likelihood that two names that do not belong to the same object are linked by a chain of pairs increases. This is a bit like the game where you have to change one word into another in a given number of steps by changing one letter at a time (the words in between have to be valid words). When the vocabulary is bigger this becomes easier. Therefore, the optimal threshold depends on the number of actual town names and the number of misspellings.

We have the official names and can therefore measure how many errors we make. We make an error when we put two records from x in the same group while they actually belong to different object (official town names). First we add a variable indicating whether two pairs have the same official name:

> compare_vars(pairs, "true", on_x = "official_name",
+   inplace = TRUE)

In practice this information is not available, but it might be available for a subset of records, for example, after manual inspection of a subset of the pairs. We now round the similarity scores and count how many errors we make for each value of the similarity score threshold:

> pairs$threshold <- trunc(pairs$name/0.05)*0.05
> thresholds <- pairs[, .(ftrue = mean(true)), by = threshold]
> print(thresholds[order(ftrue)])
  Total number of pairs: 16 pairs

    threshold       ftrue
        <num>       <num>
 1:      0.25 0.000000000
 2:      0.30 0.001727116
 3:      0.35 0.014810045
 4:      0.50 0.034417054
 5:      0.45 0.036163208
 6:      0.00 0.055555556
 7:      0.40 0.055960708
 8:      0.55 0.057551227
 9:      0.60 0.176160406
10:      0.65 0.365251342
11:      0.70 0.573084217
12:      0.75 0.772509347
13:      0.80 0.895522388
14:      0.85 0.941742311
15:      0.90 0.995657100
16:      0.95 1.000000000

For a threshold of 0.95 and 1.00 we make no errors. Below that we start making errors. So let’s work with a threshold of 0.95 for now

> select_threshold(pairs, "select", "name", threshold = 0.95,
+   inplace = TRUE)
> res <- deduplicate_equivalence(pairs, "group", "select")
> print(res)
                         name          official_name group
                       <fctr>                 <fctr> <int>
  1:             alblasserdam           Alblasserdam   541
  2:                amsterdam              Amsterdam   427
  3:           amsterdam-z.o.              Amsterdam   427
  4:       amsterdam-zuidoost              Amsterdam   558
  5:            amsterdam z-o              Amsterdam   427
 ---                                                      
580: amsterdam (duivendrecht) Amsterdam-Duivendrecht   580
581:      amsterdam zzuidoost              Amsterdam   558
582:     hoovliet (rotterdam)    Hoogvliet Rotterdam   568
583:                roettrdam              Rotterdam   496
584:               srotterdam              Rotterdam   496

With deduplicate_equivalence we take all selected pairs (indicated by the column select) and put them in the same group.
res now contains the original dataset with a group column added that indicates the unique objects (towns in this case). We can see how many towns we have in the resulting dataset:

> length(unique(res$group))
[1] 162

This is quite large. We started with 584 town names and reduced that to 162 while there are actually 19 town names. We can measure the quality by counting how often we have more than one official town name in one group:

> qual <- res[, .(errors = length(unique(official_name))-1, n = .N), by = group]
> qual$ferrors <- qual$errors/qual$n
> qual[errors > 0]
Empty data.table (0 rows and 4 cols): group,errors,n,ferrors

So we have a large number of groups and no errors: no town names have been classified in the same group while actually being different towns. We can check what happens when we decrease the threshold. We will probably introduce some errors while we decrease the number of groups:

> # Create a sequence of thresholds and initialise the result vectors
> thresholds <- seq(0.5, 1, by = 0.02)
> sizes <- numeric(length(thresholds))
> nerrors <- numeric(length(thresholds))
> for (i in seq_along(thresholds)) {
+   threshold <- thresholds[i]
+   # Perform deduplication with the given threshold
+   select_threshold(pairs, "select", "name", threshold = threshold, inplace = TRUE)
+   res <- deduplicate_equivalence(pairs, "group", "select")
+   # Count the number of unique groups
+   sizes[i] <- length(unique(res$group))
+   # Count the number of errors
+   qual <- res[, .(errors = length(unique(official_name))-1, n = .N), by = group]
+   nerrors[i] <- sum(qual$errors)
+ }

The results are plotted in the figure below.

We can see that as the threshold decreases the number of errors increases and the number of groups decreases. We cannot get much less than the 161 groups we found without introducing some errors. How many errors and/or groups are acceptable depends on the application and the amount of time one s willing to spend in manually merging the groups. In this case manually inspecting the groups and merging them will probably take only a few hours and

With a threshold of 0.9 we should get approximately 100 groups and 5 errors which seems a reasonable trade-off. So, let’s rerun some of the previous code with a threshold of 0.90.

> select_threshold(pairs, "select", "name", threshold = 0.9,
+   inplace = TRUE)
> res <- deduplicate_equivalence(pairs, "group", "select")
> qual <- res[, .(errors = length(unique(official_name))-1, n = .N), by = group]
> qual$ferrors <- qual$errors/qual$n
> qual[errors > 0]
   group errors     n    ferrors
   <int>  <num> <int>      <num>
1:   543      1   256 0.00390625
2:   571      1     7 0.14285714
3:   441      1    78 0.01282051
4:   578      1    10 0.10000000
5:   296      1     6 0.16666667

One way of assigning names to the groups we derived, is to use the most frequent name used in the group. Assuming that most people will correctly spell the town names this should give us the official town name belonging to each group. In this example dataset each town name occurs only once so can’t use that trick. However, we can use the most frequent official name. We first define a function that returns the most frequent value of a vector and use that to derive the name of the group.

> most_frequent <- function(x) {
+   t <- table(x)
+   t <- sort(t)
+   tail(names(t), 1)
+ }
> res[, assigned_name := most_frequent(official_name), by = group]
> print(res)
                         name          official_name group
                       <fctr>                 <fctr> <int>
  1:             alblasserdam           Alblasserdam   453
  2:                amsterdam              Amsterdam   543
  3:           amsterdam-z.o.              Amsterdam   543
  4:       amsterdam-zuidoost              Amsterdam   543
  5:            amsterdam z-o              Amsterdam   543
 ---                                                      
580: amsterdam (duivendrecht) Amsterdam-Duivendrecht   580
581:      amsterdam zzuidoost              Amsterdam   543
582:     hoovliet (rotterdam)    Hoogvliet Rotterdam   156
583:                roettrdam              Rotterdam   441
584:               srotterdam              Rotterdam   441
              assigned_name
                     <char>
  1:           Alblasserdam
  2:              Amsterdam
  3:              Amsterdam
  4:              Amsterdam
  5:              Amsterdam
 ---                       
580: Amsterdam-Duivendrecht
581:              Amsterdam
582:    Hoogvliet Rotterdam
583:              Rotterdam
584:              Rotterdam

We can now also look at the errors:

> print(res[assigned_name != official_name])
                     name       official_name group    assigned_name
                   <fctr>              <fctr> <int>           <char>
 1:   rotterdam hoogvliet Hoogvliet Rotterdam   441        Rotterdam
 2:   rotterdam-hoogvliet Hoogvliet Rotterdam   441        Rotterdam
 3:         nw. amsterdam     Nieuw Amsterdam   543        Amsterdam
 4: rotterdam - hoogvliet Hoogvliet Rotterdam   441        Rotterdam
 5:  amsterdam (driemond)           Amsterdam   578           Diemen
 6:          nw-amsterdam     Nieuw Amsterdam   543        Amsterdam
 7:          nw amsterdam     Nieuw Amsterdam   543        Amsterdam
 8:   amsterdam- driemond           Amsterdam   578           Diemen
 9:    amsterdam-driemond           Amsterdam   578           Diemen
10:  rotterdam -hoogvliet Hoogvliet Rotterdam   441        Rotterdam
11:   rotterdam/hoogvliet Hoogvliet Rotterdam   441        Rotterdam
12:  rotterdam  hoogvliet Hoogvliet Rotterdam   441        Rotterdam
13:          nw.amsterdam     Nieuw Amsterdam   543        Amsterdam
14:    amsterdam driemond           Amsterdam   578           Diemen
15:               veerdam             Veendam   571          Leerdam
16:  rotterdam(hoogvliet) Hoogvliet Rotterdam   441        Rotterdam
17: rotterdam (hoogvliet) Hoogvliet Rotterdam   441        Rotterdam
18:    rotterdam-hoogvlie Hoogvliet Rotterdam   441        Rotterdam
19:    rotterdam (prinsen           Rotterdam   296 Pernis Rotterdam
20:  rotterdam- hoogvliet Hoogvliet Rotterdam   441        Rotterdam
21:    rotterdam hoogvlie Hoogvliet Rotterdam   441        Rotterdam
22:    amsterdam-driemand           Amsterdam   578           Diemen
                     name       official_name group    assigned_name

We see that we make a lot of errors with the town of Hoogvliet Rotterdam. The problem we have is a difficult one. For example, rotterdam charlois should be called Rotterdam while rotterdam hoogvliet should be called Hoogvliet Rotterdam. We can’t really expect that a computer is able to distinguish between these two without additional information. One other way of solving this problem is actually consider this as a linkage problem: we want to link a set of written town names to an official set of town names.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.