The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
As described in detail in Schoon, Melamed, and Breiger (2024), regression inside out entails understanding cases’ contributions to the regression model space. Decomposing regression coefficients by cases or subsets and model visualization techniques are the key tools of regression inside out. decompose.model takes a regression model object and a numeric grouping vector for the cases, and returns the contributions to the regression coefficients and model variances by the grouping vector. Currently supported models include OLS, logistic regression, Poisson regression, and negative binomial regression. An example of each is provided below.
OLS regression:
library(rioplot)
data(Kenworthy99)
m1 <- lm(scale(dv) ~ scale(gdp) + scale(pov) + scale(tran) -1,data=Kenworthy99)
decompose.model(m1,group.by = c(rep(1,5),rep(2,5),rep(3,5)),include.int = "no")
## $decomp.coef
## 1 2 3 Model Coefs
## scale(gdp) 0.09043127 -0.3442457 0.07137623 -0.1824382
## scale(pov) 0.08898153 0.4106594 0.28299251 0.7826334
## scale(tran) -0.01805233 -0.3473903 -0.07841964 -0.4438622
##
## $decomp.var
## 1 2 3 Model Variances
## scale(gdp) 0.007805959 0.01254747 0.003479965 0.02383339
## scale(pov) 0.007215453 0.01159828 0.003216712 0.02203044
## scale(tran) 0.006942633 0.01115974 0.003095086 0.02119746
Logistic regression:
data("Hilbe")
Hilbe <- data.frame(Hilbe,binAffairs=ifelse(Hilbe$naffairs>0,1,0))
m2<-glm(binAffairs ~ avgmarr + hapavg + vryhap + smerel + vryrel + yrsmarr4 +
yrsmarr5 + yrsmarr6,data=Hilbe, family=binomial())
decompose.model(m2,group.by = c(rep(1,201),rep(2,200),rep(3,200)),
model.type = "logit")
## $decomp.coef
## 1 2 3 Model Coefs
## Intercept 0.05971787 -0.1273528 -0.10348046 -0.1711154
## avgmarr -0.24968851 -0.3694616 -0.16264481 -0.7817949
## hapavg -0.38716522 -0.3343743 -0.31712921 -1.0386688
## vryhap -0.49279971 -0.5384404 -0.51360407 -1.5448441
## smerel -0.09356562 -0.4037141 -0.32915986 -0.8264395
## vryrel -0.33019003 -0.1025715 -0.33405582 -0.7668174
## yrsmarr4 0.16396384 0.3400305 -0.08552834 0.4184660
## yrsmarr5 0.04293827 0.4087135 0.26864221 0.7202940
## yrsmarr6 0.06312812 0.1722334 0.37648895 0.6118505
##
## $decomp.var
## 1 2 3 Model Variances
## Intercept 0.03630495 0.02235802 0.02469380 0.08335666
## avgmarr 0.04672728 0.02877650 0.03178283 0.10728653
## hapavg 0.03553109 0.02188145 0.02416744 0.08157993
## vryhap 0.04038689 0.02487184 0.02747024 0.09272876
## smerel 0.02470405 0.01521373 0.01680313 0.05672073
## vryrel 0.05277061 0.03249822 0.03589336 0.12116191
## yrsmarr4 0.04469174 0.02752293 0.03039830 0.10261274
## yrsmarr5 0.04644890 0.02860507 0.03159349 0.10664724
## yrsmarr6 0.02737290 0.01685731 0.01861842 0.06284849
Poisson regression:
m3<-glm(naffairs~avgmarr + hapavg + vryhap + smerel + vryrel + yrsmarr4 +
yrsmarr5 + yrsmarr6,data=Hilbe,family=poisson(link="log"))
decompose.model(m3,group.by = c(rep(1,201),rep(2,200),rep(3,200)),
model.type="poisson")
## $decomp.coef
## 1 2 3 Model Coefs
## Intercept 0.36961499 0.3344646 0.1896101 0.8936896
## avgmarr -0.29605739 -0.2439847 -0.3046603 -0.8447024
## hapavg -0.25561998 -0.4450145 -0.2758378 -0.9764722
## vryhap -0.51444273 -0.5858584 -0.2268714 -1.3271725
## smerel -0.03922081 -0.3953424 -0.4299400 -0.8645032
## vryrel -0.13793948 -0.3946393 -0.3580721 -0.8906509
## yrsmarr4 0.02940394 0.3116065 0.2160086 0.5570191
## yrsmarr5 0.30313205 0.4027702 0.2315718 0.9374741
## yrsmarr6 0.09839040 0.3084983 0.5403358 0.9472245
##
## $decomp.var
## 1 2 3 Model Variances
## Intercept 0.003187445 0.001623947 0.004293614 0.009105005
## avgmarr 0.003821151 0.001946809 0.005147240 0.010915199
## hapavg 0.002540005 0.001294088 0.003421487 0.007255580
## vryhap 0.003546249 0.001806751 0.004776937 0.010129937
## smerel 0.002773807 0.001413206 0.003736427 0.007923439
## vryrel 0.006389824 0.003255502 0.008607344 0.018252669
## yrsmarr4 0.004858560 0.002475350 0.006544671 0.013878581
## yrsmarr5 0.004682337 0.002385568 0.006307292 0.013375197
## yrsmarr6 0.003082791 0.001570627 0.004152640 0.008806058
Negative binomial regression:
library(MASS)
m4<-glm.nb(naffairs~avgmarr + hapavg + vryhap + smerel + vryrel + yrsmarr4 +
yrsmarr5 + yrsmarr6,data=Hilbe)
decompose.model(m4,group.by = c(rep(1,201),rep(2,200),rep(3,200)),model.type="nb")
## $decomp.coef
## 1 2 3 Model Coefs
## Intercept 0.4080631 0.3140500 0.1863346 0.9084476
## avgmarr -0.3472504 -0.3204935 -0.3209343 -0.9886782
## hapavg -0.3044775 -0.4181657 -0.2766478 -0.9992911
## vryhap -0.5437135 -0.6060801 -0.2307394 -1.3805330
## smerel -0.2252334 -0.4726392 -0.4903277 -1.1882004
## vryrel -0.4713079 -0.3008507 -0.5009572 -1.2731158
## yrsmarr4 0.1433029 0.4351759 0.4599113 1.0383903
## yrsmarr5 0.2768647 0.3583896 0.2660988 0.9013532
## yrsmarr6 0.2551637 0.3540654 0.5454519 1.1546810
##
## $decomp.var
## 1 2 3 Model Variances
## Intercept 0.04960029 0.02359640 0.05814853 0.13134523
## avgmarr 0.06706241 0.03190368 0.07862011 0.17758620
## hapavg 0.05016872 0.02386682 0.05881492 0.13285046
## vryhap 0.05169347 0.02459219 0.06060244 0.13688811
## smerel 0.02777333 0.01321264 0.03255985 0.07354583
## vryrel 0.06021224 0.02864484 0.07058936 0.15944643
## yrsmarr4 0.05223215 0.02484846 0.06123396 0.13831458
## yrsmarr5 0.05813023 0.02765436 0.06814853 0.15393312
## yrsmarr6 0.03252648 0.01547386 0.03813217 0.08613251
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.