
Package ‘rjd3toolkit’
January 13, 2026

Type Package

Title Utility Functions Around 'JDemetra+ 3.0'

Version 3.6.0

Description R Interface to 'JDemetra+ 3.x'
(<https://github.com/jdemetra>) time series analysis software. It
provides functions allowing to model time series (create outlier
regressors, user-defined calendar regressors, Unobserved Components
AutoRegressive Integrated Moving Average (UCARIMA) models...), to test
the presence of trading days or seasonal effects and also to set
specifications in pre-adjustment and benchmarking when using 'rjd3x13'
or 'rjd3tramoseats'.

License EUPL

URL https://github.com/rjdverse/rjd3toolkit,

https://rjdverse.github.io/rjd3toolkit/

BugReports https://github.com/rjdverse/rjd3toolkit/issues

Depends R (>= 4.1)

Imports checkmate, graphics, methods, rJava (>= 1.0-6), rjd3jars,
RProtoBuf (>= 0.4.20), stats, utils

Encoding UTF-8

Language en-GB

LazyData TRUE

RoxygenNote 7.3.3

SystemRequirements Java (>= 17)

Collate 'utils.R' 'jd2r.R' 'protobuf.R' 'arima.R' 'calendars.R'
'calendarts.R' 'decomposition.R' 'deprecated.R'
'differencing.R' 'display.R' 'distributions.R' 'generics.R'
'jd3rslts.R' 'modellingcontext.R' 'procresults.R'
'regarima_generic.R' 'regarima_rslts.R' 'spec_benchmarking.R'
'spec_regarima.R' 'splines.R' 'tests_regular.R'
'tests_seasonality.R' 'tests_td.R' 'timeseries.R' 'variables.R'
'zzz.R'

1

https://github.com/jdemetra
https://github.com/rjdverse/rjd3toolkit
https://rjdverse.github.io/rjd3toolkit/
https://github.com/rjdverse/rjd3toolkit/issues


2 Contents

NeedsCompilation no

Author Jean Palate [aut],
Alain Quartier-la-Tente [aut] (ORCID:
<https://orcid.org/0000-0001-7890-3857>),

Tanguy Barthelemy [aut, cre, art],
Anna Smyk [aut]

Maintainer Tanguy Barthelemy <tanguy.barthelemy@insee.fr>

Repository CRAN

Date/Publication 2026-01-13 18:00:02 UTC

Contents
.add_ud_var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
.likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
.r2jd_tsdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
.tsmoniker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
add_outlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
add_usrdefvar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
arima_difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
arima_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
arima_properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
arima_sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Births . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
bsplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
calendar_td . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
chained_calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
clean_extremities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
compare_annual_totals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
data_to_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
daysOf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
density_chi2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
density_gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
density_inverse_gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
density_inverse_gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
density_t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
deprecated-rjd3toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
differencing_fast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
do_stationary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
easter_dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
easter_day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

https://orcid.org/0000-0001-7890-3857


Contents 3

easter_variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Exports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
fixed_day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
fixed_week_day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
holidays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
intervention_variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
jd3_print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
ljungbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
long_term_mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
lp_variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
mad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
modelling_context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
monotonic_cspline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
national_calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
natural_cspline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
normality_tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
outliers_variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
periodic_bsplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
periodic_cspline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
periodic_csplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
periodic_dummies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
print_calendars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
r2jd_calendarts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ramp_variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
rangemean_tstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
reload_dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Retail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
runstests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
sadecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
sarima_decompose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
sarima_estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
sarima_hannan_rissanen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
sarima_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
sarima_properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
sarima_random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
sa_preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
seasonality_canovahansen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
seasonality_canovahansen_trigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
seasonality_combined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
seasonality_f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
seasonality_friedman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
seasonality_kruskalwallis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
seasonality_modified_qs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
seasonality_periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
seasonality_qs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
set_arima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



4 .add_ud_var

set_automodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
set_basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
set_benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
set_easter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
set_estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
set_outlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
set_tradingdays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
set_transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
single_day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
special_day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
statisticaltest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
stock_td . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
td . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
td_canovahansen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
td_f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
td_timevarying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
to_ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
to_tscollection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
tramoseats_spec_default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
trigonometric_variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
tsdata_of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
ts_adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
ts_interpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
ucarima_canonical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ucarima_estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ucarima_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ucarima_wk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
weighted_calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
x13_spec_default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Index 116

.add_ud_var Add user-defined variable to a SA model

Description

Add user-defined variable to a SA model

Usage

.add_ud_var(x, jx, userdefined = NULL, out_class = NULL, result = FALSE)



.likelihood 5

Arguments

x The model of SA
jx Reference to a Java object
userdefined vector containing the names of the object to extract.
out_class Java class of the result object
result Boolean. Does jx contains the results? Default to FALSE.

Value

A new model with same class as x

.likelihood Information on the (log-)likelihood

Description

Function allowing to gather information on likelihood estimation

Usage

.likelihood(
nobs,
neffectiveobs = NA,
nparams = 0,
ll,
adjustedll = NA,
aic,
aicc,
bic,
bicc,
ssq

)

Arguments

nobs Number of observations
neffectiveobs Number of effective observations. NA if the same as nobs.
nparams Number of hyper-parameters
ll Log-likelihood
adjustedll Adjusted log-likelihood when the series has been transformed
aic AIC
aicc AICC
bic BIC
bicc BIC corrected for the length
ssq Sum of the squared residuals



6 .r2jd_tsdata

Value

Returns a java object of class JD3_LIKELIHOOD.

Examples

# Values used below are taken from the following estimation
# m <- rjd3x13::x13(rjd3toolkit::ABS$X0.2.09.10.M, "rsa3")
# m$result$preprocessing$estimation$likelihood
ll_estimation <- .likelihood(425, 4, 7, 720.2, -2147.407, 4308.14, 4309.09,

4333.96, 433.962, 0.0418)

.r2jd_tsdata Java Utility Functions

Description

These functions are used in all JDemetra+ 3.0 packages to easily interact between R and Java
objects.

Usage

.r2jd_tsdata(s)

.r2jd_tsdomain(period, startYear, startPeriod, length)

.jd2r_tsdata(s)

.jd2r_mts(s)

.jd2r_lts(s)

.jd2r_matrix(s)

.r2jd_matrix(s)

.jdomain(period, start, end)

.enum_sextract(type, p)

.enum_sof(type, code)

.enum_extract(type, p)

.enum_of(type, code, prefix)



.r2jd_tsdata 7

.r2p_parameter(r)

.p2r_parameter(p)

.r2p_parameters(r)

.r2p_lparameters(r)

.p2r_parameters(p)

.p2r_parameters_rslt(p)

.p2r_parameters_rsltx(p)

.p2r_test(p)

.p2r_matrix(p)

.p2r_tsdata(p)

.r2p_tsdata(r)

.p2r_parameters_estimation(p)

.p2r_likelihood(p)

.p2r_date(p)

.r2p_date(s)

.p2r_span(span)

.r2p_span(rspan)

.p2r_arima(p)

.p2r_ucarima(p)

.p2r_spec_sarima(spec)

.r2p_spec_sarima(r)

.p2r_outliers(p)

.r2p_outliers(r)

.p2r_sequences(p)



8 .r2jd_tsdata

.r2p_sequences(r)

.p2r_iv(p)

.r2p_iv(r)

.p2r_ivs(p)

.r2p_ivs(r)

.p2r_ramps(p)

.r2p_ramps(r)

.p2r_uservars(p)

.r2p_uservars(r)

.p2r_variables(p)

.p2r_sa_decomposition(p, full = FALSE)

.p2r_sa_diagnostics(p)

.p2r_spec_benchmarking(p)

.r2p_spec_benchmarking(r)

.r2jd_sarima(model)

.jd2r_ucarima(jucm)

.p2jd_calendar(pcalendar)

.r2p_calendar(r)

.proc_numeric(rslt, name)

.proc_vector(rslt, name)

.proc_int(rslt, name)

.proc_bool(rslt, name)

.proc_ts(rslt, name)

.proc_str(rslt, name)



.r2jd_tsdata 9

.proc_desc(rslt, name)

.proc_test(rslt, name)

.proc_parameter(rslt, name)

.proc_parameters(rslt, name)

.proc_matrix(rslt, name)

.proc_data(rslt, name)

.proc_dictionary(name)

.proc_dictionary2(jobj)

.proc_likelihood(jrslt, prefix)

.r2p_moniker(r)

.p2r_moniker(p)

.r2p_datasupplier(name, r)

.p2r_metadata(p)

.r2p_metadata(r, type)

.p2r_ts(p)

.r2p_ts(r)

.p2r_tscollection(p)

.r2p_tscollection(r)

.r2jd_ts(s)

.jd2r_ts(js)

.r2jd_tscollection(s)

.jd2r_tscollection(js)

.p2r_datasupplier(p)

.r2p_datasuppliers(r)



10 .r2jd_tsdata

.p2r_datasuppliers(p)

.p2jd_variables(p)

.jd2p_variables(jd)

.jd2r_variables(jcals)

.r2jd_variables(r)

.p2r_context(p)

.r2p_context(r)

.p2jd_context(p)

.jd2p_context(jd)

.jd2r_modellingcontext(jcontext)

.r2jd_modellingcontext(r)

.p2r_calendars(p)

.r2p_calendars(r)

.p2jd_calendars(p)

.jd2p_calendars(jd)

.jd2r_calendars(jcals)

.r2jd_calendars(r)

.jd3_object(jobjRef, subclasses = NULL, result = FALSE)

.p2r_regarima_rslts(p)

.r2jd_tmp_ts(s, name)

.r2jd_make_ts(source, id, type = "All")

.r2jd_make_tscollection(source, id, type = "All")

current_java_version

minimal_java_version



.tsmoniker 11

get_date_min()

get_date_max()

Arguments

s Time series

startYear Initial year in the time domain

startPeriod Initial period in the time domain(1 for the first period)

length Length
p, r, spec, jucm, start, end, name, period, type, code, prefix, span, rspan,
full, rslt, jd, jcontext, jobjRef, jcals, subclasses, result, pcalendar

parameters.

model Model

jobj Java object

jrslt Reference to a Java object

js Java time series

source Source of the time series information

id Identifier of the time series information (source-dependent)

Format

An object of class integer of length 1.

An object of class numeric of length 1.

.tsmoniker Create a Moniker

Description

Create a Moniker

Usage

.tsmoniker(source, id)

Arguments

source Source of the time series.

id Id of the time series.

Value

Returns a java object of class JD3_TSMONIKER.



12 add_outlier

Examples

source <- "Txt"
# id is split due to length restrictions
id1 <- "demetra://tsprovider/Txt/20111201/SERIES?datePattern=dd%2FMM%2Fyyyy&delimiter=SEMICOLON&"
id2 <- "file=C%3A%5CDocuments%5CIPI%5CData%5CIPI_nace4.csv#seriesIndex=0"
id <- paste0(id1, id2)
moniker <- .tsmoniker(source, id)

ABS Retail trade statistics in Australia

Description

Retail trade statistics in Australia

Usage

ABS

Format

An object of class data.frame with 425 rows and 22 columns.

Source

ABS

Examples

data(ABS)

add_outlier Manage Outliers/Ramps in Specification

Description

Generic function to add outliers or Ramp regressors (add_outlier() and add_ramp()) to a speci-
fication or to remove them (remove_outlier() and remove_ramp()).

Usage

add_outlier(x, type, date, name = sprintf("%s (%s)", type, date), coef = 0)

remove_outlier(x, type = NULL, date = NULL, name = NULL)

add_ramp(x, start, end, name = sprintf("rp.%s - %s", start, end), coef = 0)

remove_ramp(x, start = NULL, end = NULL, name = NULL)



add_outlier 13

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

type, date type and date of the outliers. Possible type are: "AO" = additive, "LS" = level
shift, "TC" = transitory change and "SO" = seasonal outlier.

name the name of the variable (to format print).

coef the coefficient if needs to be fixed. If equal to 0 the outliers/ramps coefficients
are estimated.

start, end dates of the ramp regressor.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()). If a Seasonal adjustment process is performed, each type of
Outlier will be allocated to a pre-defined component after the decomposition: "AO" and "TC" to
the irregular, "LS" and Ramps to the trend.

Value

The modified specification (with/without outliers or ramp)

References

More information on outliers and other auxiliary variables in JDemetra+ online documentation:
https://jdemetra-new-documentation.netlify.app/

See Also

add_usrdefvar, intervention_variable

Examples

init_spec <- x13_spec_default

# Adding outlier on year 2012
new_spec <- add_outlier(init_spec, type = "AO", date = "2012-01-01")
# Removing outlier on year 2012
new_spec <- remove_outlier(new_spec, type = "AO", date = "2012-01-01")

# Adding ramp on year 2012
new_spec2 <- add_ramp(init_spec, start = "2012-01-01", end = "2012-12-01")
# Removing ramp on year 2012
new_spec2 <- remove_ramp(new_spec2, start = "2012-01-01", end = "2012-12-01")

https://jdemetra-new-documentation.netlify.app/


14 add_usrdefvar

add_usrdefvar Add a User-Defined Variable to Pre-Processing Specification.

Description

Function allowing to add any user-defined regressor to a specification and allocate its effect to a
selected component, excepted to the calendar component. To add user-defined calendar regressors,
set_tradingdays. Once added to a specification, the external regressor(s) will also have to be
added to a modelling context before being used in an estimation process. see modelling_context
and example.

Usage

add_usrdefvar(
x,
group = "r",
name,
label = paste0(group, ".", name),
lag = 0,
coef = NULL,
regeffect = c("Undefined", "Trend", "Seasonal", "Irregular", "Series",
"SeasonallyAdjusted")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

group, name the name of the regressor in the format "group.name", by default "r.name" by
default if group NULL "group.name" has to be the same as in modelling_context
(see examples)

label the label of the variable to be displayed when printing specification or results.
By default equals to group.name.

lag integer defining if the user-defined variable should be lagged. By default (lag =
0), the regressor xt is not lagged. If lag = 1, then xt−1 is used.

coef the coefficient, if needs to be fixed.

regeffect component to which the effect of the user-defined variable will be assigned. By
default ("Undefined"), see details.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()). Components to which the effect of the regressor can be allo-
cated:



add_usrdefvar 15

• "Undefined" : the effect of the regressor is assigned to an additional component, the vari-
able is used to improve the pre-processing step, but is not removed from the series for the
decomposition.

– "Trend": after the decomposition the effect is allocated to the trend component, like a
Level-Shift

– "Irregular": after the decomposition the effect is allocated to the irregular component,
like an Additive-outlier

– "Seasonal": after the decomposition the effect is allocated to the seasonal component,
like a Seasonal-outlier

– "Series": after the decomposition the effect is allocated to the raw series: yct = yt +
effect

– "SeasonallyAdjusted": after the decomposition the effect is allocated to the seasonally
adjusted series: sat = T + I + effect

Value

The modified specification (with new user-defined variables)

References

More information on outliers and other auxiliary variables in JDemetra+ online documentation:
https://jdemetra-new-documentation.netlify.app/

See Also

set_tradingdays, intervention_variable

Examples

# Creating one or several external regressors (TS objects),
# which will be gathered in one or several groups
iv1 <- intervention_variable(

frequency = 12,
start = c(2000, 1),
length = 60,
starts = "2001-01-01",
ends = "2001-12-01"

)
iv2 <- intervention_variable(

frequency = 12,
start = c(2000, 1),
length = 60,
starts = "2001-01-01",
ends = "2001-12-01",
delta = 1

)

# Using one variable in a a seasonal adjustment process
# Regressors as a list of two groups reg1 and reg2

https://jdemetra-new-documentation.netlify.app/


16 aggregate

vars <- list(
reg1 = list(x = iv1),
reg2 = list(x = iv2)

)

# Creating the modelling context
my_context <- modelling_context(variables = vars)

# Customize a default specification
init_spec <- x13_spec_default

# Regressors have to be added one by one
new_spec <- add_usrdefvar(init_spec, name = "reg1.iv1", regeffect = "Trend")
new_spec <- add_usrdefvar(new_spec, name = "reg2.iv2", regeffect = "Trend", coef = 0.7)

aggregate Aggregation of time series

Description

Makes a frequency change of this series.

Usage

aggregate(
s,
nfreq = 1,
conversion = c("Sum", "Average", "First", "Last", "Min", "Max"),
complete = TRUE

)

Arguments

s the input time series.

nfreq the new frequency. Must be la divisor of the frequency of s.

conversion Aggregation mode: sum ("Sum"), average ("Average"), first observation ("First"),
last observation ("Last"), minimum ("Min"), maximum ("Max").

complete Boolean indicating if the observation for a given period in the new series is set
missing if some data in the original series are missing.

Value

A new time series of frequency nfreq.



arima_difference 17

Examples

s <- ABS$X0.2.09.10.M
# Annual sum
aggregate(s, nfreq = 1, conversion = "Sum") # first and last years removed
aggregate(s, nfreq = 1, conversion = "Sum", complete = FALSE)
# Quarterly mean
aggregate(s, nfreq = 4, conversion = "Average")

arima_difference Remove an arima model from an existing one.

Description

More exactly, m_diff = m_left - m_right iff m_left = m_right + m_diff.

Usage

arima_difference(left, right, simplify = TRUE)

Arguments

left Left operand (JD3_ARIMA object)

right Right operand (JD3_ARIMA object)

simplify Simplify the results if possible (common roots in the auto-regressive and in the
moving average polynomials, including unit roots)

Value

a "JD3_ARIMA" model.

Examples

mod1 <- arima_model(delta = c(1, -2, 1))
mod2 <- arima_model(variance = .01)
diff <- arima_difference(mod1, mod2)
sum <- arima_sum(diff, mod2)
# sum should be equal to mod1



18 arima_properties

arima_model ARIMA Model

Description

ARIMA Model

Usage

arima_model(name = "arima", ar = 1, delta = 1, ma = 1, variance = 1)

Arguments

name Name of the model.

ar coefficients of the regular auto-regressive polynomial (1 + ar(1)B + ar(2)B + ...).
True signs.

delta non stationary auto-regressive polynomial.

ma coefficients of the regular moving average polynomial (1 + ma(1)B + ma(2)B +
...). True signs.

variance variance.

Value

a "JD3_ARIMA" model.

Examples

model <- arima_model("trend", ar = c(1, -.8), delta = c(1, -1), ma = c(1, -.5), var = 100)

arima_properties Properties of an ARIMA model

Description

The (pseudo-)spectrum and the auto-covariances of the model are returned

Usage

arima_properties(model, nspectrum = 601, nac = 36)



arima_sum 19

Arguments

model a "JD3_ARIMA" model (created with arima_model()).

nspectrum number of points to calculate the spectrum; th points are uniformly distributed
in [0, pi]

nac maximum lag at which to calculate the auto-covariances; if the model is non-
stationary, the auto-covariances are computed on its stationary transformation.

Value

A list with the auto-covariances and with the (pseudo-)spectrum

Examples

mod1 <- arima_model(ar = c(0.1, 0.2), delta = c(1, -1), ma = 0)
arima_properties(mod1)

arima_sum Sum ARIMA Models

Description

Sum ARIMA Models

Usage

arima_sum(...)

Arguments

... list of ARIMA models (created with arima_model()).

Details

Adds several Arima models, considering that their innovations are independent. The sum of two
Arima models is computed as follows: the auto-regressive parts (stationary and non stationary of
the aggregated model are the smaller common multiple of the corresponding polynomials of the
components. The sum of the acf of the modified moving average polynomials is then computed and
factorized, to get the moving average polynomial and innovation variance of the sum.

Value

a "JD3_ARIMA" model.



20 autocorrelations

Examples

mod1 <- arima_model(ar = c(0.1, 0.2), delta = 0, ma = 0)
mod2 <- arima_model(ar = 0, delta = 0, ma = c(0.4))
arima_sum(mod1, mod2)

autocorrelations Autocorrelation Functions

Description

Autocorrelation Functions

Usage

autocorrelations(data, mean = TRUE, n = 15)

autocorrelations_partial(data, mean = TRUE, n = 15)

autocorrelations_inverse(data, nar = 30, n = 15)

Arguments

data data being tested.

mean Mean correction. If TRUE, the auto-correlations are computed as usual. If FALSE,
we consider that the (known) mean is 0 and that the series has been corrected
for it.

n maximum lag at which to calculate the stats.

nar number of AR lags used to compute inverse autocorrelations.

Value

autocorrelations() returns a vector of length n with the autocorrelations. autocorrelations_partial()
returns a vector of length n with the partial autocorrelations. autocorrelations_inverse() re-
turns a vector of length n with the inverse autocorrelations.

Examples

x <- ABS$X0.2.09.10.M
autocorrelations(x)
autocorrelations_partial(x)
autocorrelations_inverse(x)



Births 21

Births Number of births registered in France from 1968 to 2024

Description

Daily number of births recorded in France (metropolitan + DOM), covering the period from January
1, 1968 to December 31, 2024.

Usage

Births

Format

A data frame with 20,820 rows and 2 variables:

• date: Date of the value (from 1968-01-01 to 2024-12-31)

• births: Number of daily births (1254–2830)

Details

The dataset corresponds to the INSEE series T79jnais. The raw data can be downloaded as a CSV
file here: https://www.insee.fr/fr/statistiques/fichier/8582123/T79jnais.csv

Source

INSEE, Statistiques de l’état civil – https://www.insee.fr/fr/statistiques/8582123?sommaire=
8582147

Examples

data(Births)
plot(Births$date, Births$births,

type = "l",
main = "Daily births in France",
ylab = "Number of births",
xlab = "date")

https://www.insee.fr/fr/statistiques/fichier/8582123/T79jnais.csv
https://www.insee.fr/fr/statistiques/8582123?sommaire=8582147
https://www.insee.fr/fr/statistiques/8582123?sommaire=8582147


22 calendar_td

bsplines B-Splines

Description

B-Splines

Usage

bsplines(order = 4, knots, pos)

Arguments

order Order of the splines (4 for cubic)

knots Knots of the splines (in [0, period[)

pos Requested positions (in [0, period[). The rows of the returned matrix will corre-
spond to those positions

Value

A matrix (len(pos) x len(knots))

Examples

s<-bsplines(knots = c(0,.2,.3, .9,.95, 1), pos=seq(0,1,0.01))
matplot(s, type='l')

calendar_td Trading day regressors with pre-defined holidays

Description

Allows to generate trading day regressors (as many as defined groups), taking into account 7
or less different types of days, from Monday to Sunday, and specific holidays,which are to de-
fined beforehand in a calendar using the functions national_calendar,weighted_calendar or
Chained_calendar.



calendar_td 23

Usage

calendar_td(
calendar = national_calendar(),
frequency,
start,
length,
s,
groups = c(1, 2, 3, 4, 5, 6, 0),
holiday = 7,
contrasts = TRUE

)

Arguments

calendar The calendar containing the required holidays
frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)
start, length First date (array with the first year and the first period, for instance c(1980, 1))

and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

groups Groups of days. The length of the array must be 7. It indicates to what group
each week day belongs. The first item corresponds to Mondays and the last one
to Sundays. The group used for contrasts (usually Sundays) is identified by 0.
The other groups are identified by 1, 2,... n (<= 6). For instance, usual trading
days are defined by c(1, 2, 3, 4, 5, 6, 0), week days by c(1, 1, 1, 1, 1, 0, 0), week
days, Saturdays, Sundays by c(1, 1, 1, 1, 1, 2, 0) etc.

holiday Day to aggregate holidays with. (holidays are considered as that day). 1 for
Monday... 7 for Sunday. Doesn’t necessary belong to the 0-group.

contrasts If true, the variables are defined by contrasts with the 0-group. Otherwise, raw
number of days is provided.

Details

Aggregated values for monthly or quarterly are the numbers of days belonging to a given group,
holidays are all summed together in of those groups. Contrasts are the differences between the num-
ber of days in a given group (1 to 6) and the number of days in the reference group (0). Regressors
are corrected for long-term mean if contrasts = TRUE.

Value

Time series (object of class c("ts","mts","matrix")) corresponding to each group, starting with
the 0-group (contrasts = FALSE) or the 1-group (contrasts = TRUE).

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


24 chained_calendar

See Also

national_calendar, td

Examples

BE <- national_calendar(list(
fixed_day(7, 21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")

))
calendar_td(BE, 12, c(1980, 1), 240,

holiday = 7, groups = c(1, 1, 1, 2, 2, 3, 0),
contrasts = FALSE

)

chained_calendar Create a Chained Calendar

Description

Allows to combine two calendars, one before and one after a given date.

Usage

chained_calendar(calendar1, calendar2, break_date)

Arguments

calendar1, calendar2
calendars to chain.

break_date the break date in the format "YYYY-MM-DD".

Details

A chained calendar is an useful option when major changes in the composition of the holidays take
place. In such a case two calendars describing the situation before and after the change of regime
can be defined and bound together, one before the break and one after the break.



clean_extremities 25

Value

returns an object of class c("JD3_CHAINEDCALENDAR","JD3_CALENDARDEFINITION")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, weighted_calendar

Examples

Belgium <- national_calendar(list(special_day("NEWYEAR"), fixed_day(7, 21)))
France <- national_calendar(list(special_day("NEWYEAR"), fixed_day(7, 14)))
chained_cal <- chained_calendar(France, Belgium, "2000-01-01")

clean_extremities Removal of missing values at the beginning/end

Description

Removal of missing values at the beginning/end

Usage

clean_extremities(s)

Arguments

s Original series

Value

Cleaned series

Examples

y <- window(ABS$X0.2.09.10.M, start = 1982, end = 2018, extend = TRUE)
y
clean_extremities(y)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


26 data_to_ts

compare_annual_totals Compare the annual totals of two series

Description

Usually a raw series and the corresponding seasonally adjusted series

Usage

compare_annual_totals(raw, sa)

Arguments

raw Raw series

sa Seasonally adjusted series

Value

The largest annual difference (in percentage of the average level of the seasonally adjusted series)

Examples

s1<- rjd3toolkit::ABS$X0.2.09.10.M
# two raw series for example's sake
s2 <- rjd3toolkit::ABS$X0.2.08.10.M
compare_annual_totals(s1,s2)

data_to_ts Promote a R time series to a "full JDemetra+ time series"

Description

Promote a R time series to a "full JDemetra+ time series"

Usage

data_to_ts(s, name)

Arguments

s R time series (class TS)

name name of the series

Value

Returns a java object of class JD3_TS



daysOf 27

Examples

s <- ABS$X0.2.09.10.M
t <- data_to_ts(s, "test")

daysOf Provides a list of dates corresponding to each period of the given time
series

Description

Provides a list of dates corresponding to each period of the given time series

Usage

daysOf(ts, pos = 1)

Arguments

ts A time series

pos The position of the first considered period.

Value

A list of the starting dates of each period

Examples

daysOf(Retail$BookStores)

density_chi2 The Chi-Squared Distribution

Description

Density, (cumulative) distribution function and random generation for chi-squared distribution.

Usage

density_chi2(df, x)

cdf_chi2(df, x)

random_chi2(df, n)



28 density_gamma

Arguments

df degrees of freedom.
x vector of quantiles.
n number of observations.

Value

The functions density_XXX and cdf_t return numeric vectors of same length as x. The functions
random_XXX return random number (numeric vectors) of length n.

Examples

density_chi2(df = 3, 1:10)
cdf_chi2(df = 3, 1:10)
random_chi2(df = 3, n = 10)

density_gamma The Gamma Distribution

Description

Density, (cumulative) distribution function and random generation for Gamma distribution.

Usage

density_gamma(shape, scale, x)

cdf_gamma(shape, scale, x)

random_gamma(shape, scale, n)

Arguments

shape, scale shape and scale parameters.
x vector of quantiles.
n number of observations.

Value

The functions density_XXX and cdf_t return numeric vectors of same length as x. The functions
random_XXX return random number (numeric vectors) of length n.

Examples

density_gamma(shape = 1, scale = 2, x = 1:10)
cdf_gamma(shape = 1, scale = 2, x = 1:10)
random_gamma(shape = 1, scale = 2, n = 10)



density_inverse_gamma 29

density_inverse_gamma The Inverse-Gamma Distribution

Description

Density, (cumulative) distribution function and random generation for inverse-gamma distribution.

Usage

density_inverse_gamma(shape, scale, x)

cdf_inverse_gamma(shape, scale, x)

random_inverse_gamma(shape, scale, n)

Arguments

shape, scale shape and scale parameters.
x vector of quantiles.
n number of observations.

Value

The functions density_XXX and cdf_t return numeric vectors of same length as x. The functions
random_XXX return random number (numeric vectors) of length n.

Examples

density_inverse_gamma(shape = 1, scale = 2, x = 1:10)
cdf_inverse_gamma(shape = 1, scale = 2, x = 1:10)
random_inverse_gamma(shape = 1, scale = 2, n = 10)

density_inverse_gaussian

The Inverse-Gaussian Distribution

Description

Density, (cumulative) distribution function and random generation for inverse-gaussian distribution.

Usage

density_inverse_gaussian(shape, scale, x)

cdf_inverse_gaussian(shape, scale, x)

random_inverse_gaussian(shape, scale, n)



30 density_t

Arguments

shape, scale shape and scale parameters.

x vector of quantiles.

n number of observations.

Value

The functions density_XXX and cdf_t return numeric vectors of same length as x. The functions
random_XXX return random number (numeric vectors) of length n.

Examples

density_inverse_gaussian(shape = 1, scale = 2, x = 1:10)
random_inverse_gaussian(shape = 1, scale = 2, n = 10)

density_t The Student Distribution

Description

Probability Density Function (PDF), Cumulative Density Function (CDF) and generation of random
variables following a Student distribution.

Usage

density_t(df, x)

cdf_t(df, x)

random_t(df, n)

Arguments

df degrees of freedom.

x vector of quantiles.

n number of observations.

Value

The functions density_XXX and cdf_t return numeric vectors of same length as x. The functions
random_XXX return random number (numeric vectors) of length n.



deprecated-rjd3toolkit 31

Examples

# Probability density function of T with 2 degrees of freedom.
z <- density_t(df = 2, .01 * seq(-100, 100, 1))
# Generating a random vector with each component drawn from a T(2) distribution
z <- random_t(2, 100)
# Computing the probabilty that the random variable X following a T distribution
# with df degrees of freedom is lower than x
z <- cdf_t(df = 12, x = 1.2)
z
z <- cdf_t(df = 12, x = c(0:10)) # array of values
z

deprecated-rjd3toolkit

Deprecated functions

Description

Use sa_decomposition() instead of sa.decomposition().

Usage

sa.decomposition(x, ...)

Arguments

x the object to print.

... further arguments.

Value

"JD3_SADECOMPOSITION" object.

diagnostics Generic Diagnostics Function

Description

Generic Diagnostics Function

Usage

diagnostics(x, ...)

## S3 method for class 'JD3'
diagnostics(x, ...)



32 dictionary

Arguments

x the object to extract diagnostics.
... further arguments.

Value

"No diagnostic" or a list with the diagnostic part of the model

Examples

decompo <- sadecomposition(
y = ts(c(112, 118, 132, 129, 121, 135), start = 2000, frequency = 12L),

sa = ts(c(121.72, 124.52, 125.4, 128.91, 128.84, 126.73), start = 2000, frequency = 12L),
t = ts(c(122.24, 124.33, 126.21, 127.61, 127.8, 126.94), start = 2000, frequency = 12L),
s = ts(c(0.92, 0.95, 1.05, 1, 0.94, 1.07), start = 2000, frequency = 12L),
i = ts(c(1, 1, 0.99, 1.01, 1.01, 1), start = 2000, frequency = 12L),
mul = TRUE

)
diagnostics(decompo)

dictionary Get Dictionary and Result

Description

Extract dictionary of a "JD3_ProcResults" object (dictionary()) and extract a specific value
(result()) or a list of values (user_defined()).

Usage

dictionary(object)

result(object, id)

user_defined(object, userdefined = NULL)

Arguments

object the java object.
id the name of the object to extract.
userdefined vector containing the names of the object to extract.

Value

the function dictionary() returns a character vector with the items that can be extracted from
object. The result() function extract an item from the object. The user_defined() function do
the same thing as result() but can also extract several element at once and encapsulate the items
in a user_defined class object.



differences 33

differences Differencing of a series

Description

Differencing of a series

Usage

differences(data, lags = 1, mean = TRUE)

Arguments

data The series to be differenced.
lags Lags of the differencing.
mean Apply a mean correction at the end of the differencing process.

Value

The differenced series.

Examples

differences(Retail$BookStores, c(1, 1, 12), FALSE)

differencing_fast The series is differenced till its variance is decreasing.

Description

Automatic differencing

Usage

differencing_fast(data, period, mad = TRUE, centile = 90, k = 1.2)

Arguments

data Series being differenced.
period Period considered in the automatic differencing.
mad Use of MAD in the computation of the variance (true by default).
centile Percentage of the data used for computing the variance (90 by default).
k tolerance in the decrease of the variance. The algorithm stops if the new variance

is higher than k*the old variance. k should be equal or slightly higher than 1 (1.2
by default)



34 do_stationary

Value

Stationary transformation

• ddata: data after differencing

• mean: mean correction

• differences:

– lag: ddata(t) = data(t)− data(t− lag)

– order: order of the differencing

Examples

differencing_fast(log(ABS$X0.2.09.10.M), 12)

do_stationary Automatic stationary transformation

Description

Automatic processing (identification of the order of the differencing) based on auto-correlations and
on mean correction. The series should not be seasonal. Source: Tramo

Usage

do_stationary(data, period)

Arguments

data Series being differenced.

period Period of the series.

Value

Stationary transformation

• ddata: data after differencing

• mean: mean correction

• differences:

– lag: ddata(t) = data(t)− data(t− lag)

– order: order of the differencing

Examples

do_stationary(log(ABS$X0.2.09.10.M), 12)



easter_dates 35

easter_dates Display Easter Sunday dates in given period

Description

Allows to display the date of Easter Sunday for each year, in the defined period. Dates are displayed
in "YYYY-MM-DD" format and as a number of days since January 1st 1970.

Usage

easter_dates(year0, year1, julian = FALSE)

Arguments

year0, year1 starting year and ending year

julian Boolean indicating if Julian calendar must be used.

Value

a named numeric vector. Names are the dates in format "YYYY-MM-DD", values are number of
days since January 1st 1970.

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, easter_day

Examples

# Dates from 2018(included) to 2023 (included)
easter_dates(2018, 2023)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


36 easter_day

easter_day Set a Holiday on an Easter related day

Description

Allows to define a holiday which date is related to Easter Sunday.

Usage

easter_day(offset, julian = FALSE, weight = 1, validity = NULL)

Arguments

offset The position of the holiday in relation to Easter Sunday, measured in days (can
be positive or negative).

julian Boolean indicating if Julian calendar must be used.

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

Value

returns an object of class c("JD3_EASTERDAY","JD3_HOLIDAY")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, fixed_day,special_day,fixed_week_day

Examples

easter_day(1) # Easter Monday
easter_day(-2) # Easter Good Friday
# Corpus Christi 60 days after Easter
# Sunday in Julian calendar with weight 0.5, from January 2000 to December 2020
easter_day(

offset = 60, julian = TRUE, weight = 0.5,
validity = list(start = "2000-01-01", end = "2020-12-01")

)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


easter_variable 37

easter_variable Easter regressor

Description

Allows to generate a regressor taking into account the (Julian) Easter effect in monthly or quarterly
time series.

Usage

easter_variable(
frequency,
start,
length,
s,
duration = 6,
endpos = -1,
correction = c("Simple", "PreComputed", "Theoretical", "None")

)

julianeaster_variable(frequency, start, length, s, duration = 6)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

duration Duration (length in days) of the Easter effect. (value between 1 and 20, default
=6)

endpos Position of the end of the Easter effect, relatively to Easter: -1(default): before
Easter Sunday, 0: on Easter Sunday, 1: on Easter Monday)

correction mean correction option. Simple"(default), "PreComputed", "Theoretical" or
"None".

Value

A time series (object of class "ts")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


38 Electricity

See Also

calendar_td

Examples

# Monthly regressor, five-year long, duration 8 days, effect finishing on Easter Monday
ee <- easter_variable(12, c(2020, 1), length = 5 * 12, duration = 8, endpos = 1)
je <- julianeaster_variable(12, c(2020, 1), length = 5 * 12, duration = 8)

Electricity French national electricity consumtion

Description

French national electricity consumtion

Usage

Electricity

Format

A data frame with 210384 rows and 3 variables:

• Date: Date of the event (from January 1, 2012 to December 31, 2023)

• Hours: Timestamp of the event (from 00:00 AM to 11:30 PM)

• Consumtion: number of daily birth (29124–102098)

Source

https://www.rte-france.com/en/data-publications/eco2mix/download-indicators

Examples

data(Electricity)

https://www.rte-france.com/en/data-publications/eco2mix/download-indicators


Exports 39

Exports Belgian exports to European countries

Description

Belgian exports to European countries

Usage

Exports

Format

An object of class list of length 34.

Source

NBB

Examples

data(Exports)

fixed_day Set a holiday on a Fixed Day

Description

It creates a holiday falling on a fixed day each year, with an optional weight and period of validity,
like Christmas which is always celebrated on December 25th.

Usage

fixed_day(month, day, weight = 1, validity = NULL)

Arguments

month, day the month and the day of the fixed day to add.

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

Value

returns an object of class c("JD3_FIXEDDAY","JD3_HOLIDAY")



40 fixed_week_day

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, special_day,easter_day

Examples

day <- fixed_day(7, 21, .9)
day # July 21st, with weight=0.9, on the whole sample
day <- fixed_day(12, 25, .5, validity = list(start = "2010-01-01"))
day # December 25th, with weight=0.5, from January 2010
day <- fixed_day(12, 25, .5, validity = list(start = "1968-02-01", end = "2010-01-01"))
day # December 25th, with weight=0.9, from February 1968 until January 2010

fixed_week_day Set a Holiday on a Fixed Week Day

Description

Allows to define a holiday falling on a fixed week day each year, like Labour Day in the USA which
is always celebrated on the first Monday of September.

Usage

fixed_week_day(month, week, dayofweek, weight = 1, validity = NULL)

Arguments

month month of the holiday: from 1 (January) to 12 (December).

week position of the specified week day in the month: from 1 (first week of the month)
to 5. Should be always lower than 5. -1 for the last dayofweek of the month.

dayofweek day of the week: from 1 (Monday) to 7 (Sunday).

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

Value

returns an object of class c("JD3_FIXEDWEEKDAY","JD3_HOLIDAY")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


holidays 41

See Also

national_calendar, fixed_day,special_day,easter_day

Examples

day <- fixed_week_day(9, 1, 1) # first Monday(1) of September.
day

holidays Daily calendar regressors corresponding to holidays

Description

Allows to generate daily regressors (dummy variables) corresponding to each holiday of a pre-
defined calendar.

Usage

holidays(
calendar,
start,
length,
nonworking = c(6, 7),
type = c("Skip", "All", "NextWorkingDay", "PreviousWorkingDay"),
single = FALSE

)

Arguments

calendar The calendar in which the holidays are defined.

start Starting date for the regressors, format "YYYY-MM-DD".

length Length of the regressors in days.

nonworking Indexes of non working days (Monday=1, Sunday=7).

type Adjustment type when a holiday falls on a week-end:

• "NextWorkingDay": the holiday is set to the next day,
• "PreviousWorkingDay": the holiday is set to the previous day,
• "Skip": holidays corresponding to non working days are simply skipped

in the matrix,
• "All": (holidays are always put in the matrix, even if they correspond to a

non working day.

single Boolean indication if a single variable (TRUE) should be returned or a matrix
(FALSE, the default) containing the different holidays in separate columns.



42 Imports

Details

The pre-defined in a calendar has to be created with the functions national_calendar or weighted_calendar
or weighted_calendar. A many regressors as defined holidays are generated, when the holiday
occurs the value is 1 and 0 otherwise. This kind of non-aggregated regressors are used for calendar
correction in daily data.

Value

A matrix (class "matrix") where each column is associated to a holiday (in the order of creation of
the holiday) and each row to a date.

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

BE <- national_calendar(list(
fixed_day(7, 21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")

))
q <- holidays(BE, "2021-01-01", 366 * 10, type = "All")
plot(apply(q, 1, max))

Imports Belgian imports from European countries

Description

Belgian imports from European countries

Usage

Imports

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


intervention_variable 43

Format

An object of class list of length 34.

Source

NBB

Examples

data(Imports)

intervention_variable Intervention variable

Description

Function allowing to create external regressors as sequences of zeros and ones. The generated
variables will have to be added with add_usrdefvar function will require a modelling context
definition with modelling_context to be used in an estimation process.

Usage

intervention_variable(
frequency,
start,
length,
s,
starts,
ends,
delta = 0,
seasonaldelta = 0

)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

starts, ends characters specifying sequences of starts/ends dates for the intervention variable.
Can be characters or integers.

delta regular differencing order.

seasonaldelta seasonal differencing order.



44 intervention_variable

Details

Intervention variables are combinations of any possible sequence of ones and zeros (the sequence
of ones being defined by the parameters starts and ends) and of 1

(1−B)d
and 1

(1−Bs)D
where B is

the backwards operator, s is the frequency of the time series, d and D are the parameters delta and
seasonaldelta.

For example, with delta = 0 and seasonaldelta = 0 we get temporary level shifts defined by the
parameters starts and ends. With delta = 1 and seasonaldelta = 0 we get the cumulative sum
of temporary level shifts, once differenced the regressor will become a classical level shift.

Value

a ts object

References

More information on auxiliary variables in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

modelling_context, add_usrdefvar

Examples

iv1 <- intervention_variable(
frequency = 12,
start = c(2000, 1),
length = 60,
starts = "2001-01-01",
ends = "2001-12-01"

)
plot(iv1)
iv2 <- intervention_variable(

frequency = 12,
start = c(2000, 1),
length = 60,
starts = "2001-01-01",
ends = "2001-12-01",
delta = 1

)
plot(iv2)

# Using one variable in a a seasonal adjustment process
# Regressors as a list of two groups reg1 and reg2
vars <- list(

reg1 = list(x = iv1),
reg2 = list(x = iv2)

)

# creating the modelling context
my_context <- modelling_context(variables = vars)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


jd3_print 45

# customize a default specification
init_spec <- x13_spec_default
new_spec <- add_usrdefvar(init_spec, name = "reg1.iv1", regeffect = "Trend")

jd3_print JD3 print functions

Description

JD3 print functions

Usage

## S3 method for class 'JD3_ARIMA'
print(x, ...)

## S3 method for class 'JD3_UCARIMA'
print(x, ...)

## S3 method for class 'JD3_SARIMA'
print(x, ...)

## S3 method for class 'JD3_SARIMA_ESTIMATION'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'JD3_SPAN'
print(x, ...)

## S3 method for class 'JD3_LIKELIHOOD'
print(x, summary_info = getOption("summary_info"), ...)

## S3 method for class 'JD3_REGARIMA_RSLTS'
print(
x,
digits = max(3L, getOption("digits") - 3L),
summary_info = getOption("summary_info"),
...

)

Arguments

x the object to print.

... further unused parameters.

digits minimum number of significant digits to be used for most numbers.



46 ljungbox

summary_info boolean indicating if a message suggesting the use of the summary function for
more details should be printed. By default used the option "summary_info" it
used, which initialized to TRUE.

Value

The object is returned invisibly.

ljungbox Ljung-Box Test

Description

Compute Ljung-Box test to check the independence of a data.

Usage

ljungbox(data, k = 1, lag = 1, nhp = 0, sign = 0, mean = TRUE)

Arguments

data data being tested.

k number of auto-correlations used in the test

lag number of lags used between two auto-correlations.

nhp number of hyper parameters (to correct the degree of freedom)

sign if sign = 1, only positive auto-correlations are considered in the test. If sign =
-1, only negative auto-correlations are considered. If sign = 0, all auto-correlations
are integrated in the test.

mean Mean correction. If TRUE, the auto-correlations are computed as usual. If FALSE,
we consider that the (known) mean is 0 and that the series has been corrected
for it.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

ljungbox(random_t(2, 100), lag = 24, k = 1)
ljungbox(ABS$X0.2.09.10.M, lag = 24, k = 1)



long_term_mean 47

long_term_mean Display Long-term means for a set of calendar regressors

Description

Given a pre-defined calendar and set of groups, the function displays the long-term means which
would be used to seasonally adjust the corresponding regressors, as the final value using contrasts
is "number of days in the group - long term mean".

Usage

long_term_mean(
calendar,
frequency,
groups = c(1, 2, 3, 4, 5, 6, 0),
holiday = 7

)

Arguments

calendar The calendar containing the required holidays

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

groups Groups of days. The length of the array must be 7. It indicates to what group
each week day belongs. The first item corresponds to Mondays and the last one
to Sundays. The group used for contrasts (usually Sundays) is identified by 0.
The other groups are identified by 1, 2,... n (<= 6). For instance, usual trading
days are defined by c(1, 2, 3, 4, 5, 6, 0), week days by c(1, 1, 1, 1, 1, 0, 0), week
days, Saturdays, Sundays by c(1, 1, 1, 1, 1, 2, 0) etc.

holiday Day to aggregate holidays with. (holidays are considered as that day). 1 for
Monday... 7 for Sunday. Doesn’t necessary belong to the 0-group.

Details

A long-term mean is a probability based computation of the average value for every period in every
group. (see references). For monthly regressors there are 12 types of periods (January to December).

Value

returns an object of class c("matrix","array") with the long term means corresponding to each
group/period, starting with the 0-group.

Examples

BE <- national_calendar(list(
fixed_day(7, 21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),



48 lp_variable

special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")

))
lt <- long_term_mean(BE, 12,

groups = c(1, 1, 1, 1, 1, 0, 0),
holiday = 7

)

lp_variable Leap Year regressor

Description

Allows to generate a regressor correcting for the leap year or length-of-period effect.

Usage

lp_variable(
frequency,
start,
length,
s,
type = c("LeapYear", "LengthOfPeriod")

)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

type the modelling of the leap year effect: as a contrast variable (type = "LeapYear",
default) or by a length-of-month (or length-of-quarter; type = "LengthOfPeriod").

Value

Time series (object of class "ts")



mad 49

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

# Leap years occur in year 2000, 2004, 2008 and 2012
lp_variable(4, start = c(2000, 1), length = 4 * 13)
lper <- lp_variable(12, c(2000, 1), length = 10 * 12, type = "LengthOfPeriod")

mad Compute a robust median absolute deviation (MAD)

Description

Compute a robust median absolute deviation (MAD)

Usage

mad(data, centile = 50, medianCorrected = TRUE)

Arguments

data The data for which we compute the robust deviation

centile The centile used to exclude extreme values (only the "centile" part of the data
are is to compute the mad)

medianCorrected

TRUE if the series is corrected for its median, FALSE if the median is supposed
to be 0

Value

The median absolute deviation

Examples

y <- rnorm(1000)
m <- rjd3toolkit::mad(y, centile = 70)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


50 modelling_context

modelling_context Create modelling context

Description

Function allowing to include calendars and external regressors in a format that makes them usable
in an estimation process (reg-arima or tramo modelling, stand alone or as pre-processing in seasonal
adjustment). The regressors can be created with functions available in the package or come from
any other source, provided they are ts class objects.

Usage

modelling_context(calendars = NULL, variables = NULL)

Arguments

calendars list of calendars.
variables list of variables.

Value

list of calendars and variables

References

More information on auxiliary variables in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

add_usrdefvar, intervention_variable

Examples

# Creating one or several external regressors (TS objects), which will
# be gathered in one or several groups
iv1 <- intervention_variable(12, c(2000, 1), 60,

starts = "2001-01-01", ends = "2001-12-01"
)
iv2 <- intervention_variable(12, c(2000, 1), 60,

starts = "2001-01-01", ends = "2001-12-01", delta = 1
)

# Regressors as a list of two groups reg1 and reg2
vars <- list(reg1 = list(x = iv1), reg2 = list(x = iv2))

# Creating the modelling context
my_context <- modelling_context(variables = vars)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


monotonic_cspline 51

monotonic_cspline Monotonic cubic spline

Description

Monotonic cubic spline

Usage

monotonic_cspline(x, y, pos)

Arguments

x Abscissas of the knots

y Ordinates of the knots

pos Requested positions

Value

An array corresponding to the values of the spline at the requested positions

Examples

s<-monotonic_cspline(x = c(0,.2,.3, .9,.95), y= c(1,3,5,8,12), pos=seq(0,1,0.01))
plot(s, type='l')

national_calendar Create a National Calendar

Description

Will create a calendar as a list of days corresponding to the required holidays. The holidays have
to be generated by one of these functions: fixed_day(), fixed_week_day(), easter_day(),
special_day() or single_day().

Usage

national_calendar(days = list(), mean_correction = TRUE)

Arguments

days list of holidays to be taken into account in the calendar
mean_correction

TRUE if the variables generated by this calendar will contain long term mean
corrections (default). FALSE otherwise.



52 natural_cspline

Value

returns an object of class c("JD3_CALENDAR","JD3_CALENDARDEFINITION")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

chained_calendar, weighted_calendar

Examples

# Fictional calendar using all possibilities to set the required holidays
MyCalendar <- national_calendar(list(

fixed_day(7, 21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
fixed_week_day(7, 2, 3), # second Wednesday of July
special_day("MAYDAY"),
easter_day(1), # Easter Monday
easter_day(-2), # Good Friday
single_day("2001-09-11"), # appearing once
special_day("ASCENSION"),
easter_day(

offset = 60, julian = FALSE, weight = 0.5,
validity = list(start = "2000-01-01", end = "2020-12-01")

), # Corpus Christi
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")

))

natural_cspline Natural cubic spline

Description

Natural cubic spline

Usage

natural_cspline(x, y, pos)

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


normality_tests 53

Arguments

x Abscissas of the knots

y Ordinates of the knots

pos Requested positions

Value

An array corresponding to the values of the spline at the requested positions

Examples

s<-natural_cspline(x = c(0,.2,.3, .9,.95), y= c(1,3,5,8,12), pos=seq(0,1,0.01))
plot(s, type='l')

normality_tests Normality Tests

Description

Set of functions to test the normality of a time series.

Usage

bowmanshenton(data)

doornikhansen(data)

jarquebera(data, k = 0, sample = TRUE)

skewness(data)

kurtosis(data)

Arguments

data data being tested.

k number of degrees of freedom to be subtracted if the input time series is a series
of residuals.

sample boolean indicating if unbiased empirical moments should be computed.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest for details).



54 outliers_variables

Functions

• bowmanshenton(): Bowman-Shenton test

• doornikhansen(): Doornik-Hansen test

• jarquebera(): Jarque-Bera test

• skewness(): Skewness test

• kurtosis(): Kurtosis test

Examples

x <- rnorm(100) # null
bowmanshenton(x)
doornikhansen(x)
jarquebera(x)
skewness(x)
kurtosis(x)

x <- random_t(2, 100) # alternative
bowmanshenton(x)
doornikhansen(x)
jarquebera(x)
skewness(x)
kurtosis(x)

outliers_variables Generating Outlier regressors

Description

Generating Outlier regressors

Usage

ao_variable(frequency, start, length, s, pos, date = NULL)

tc_variable(frequency, start, length, s, pos, date = NULL, rate = 0.7)

ls_variable(frequency, start, length, s, pos, date = NULL, zeroended = TRUE)

so_variable(frequency, start, length, s, pos, date = NULL, zeroended = TRUE)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument



outliers_variables 55

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

pos, date the date of the outlier, defined by the position in period compared to the first
date (pos parameter) or by a specific date defined in the format "YYYY-MM-DD".

rate the decay rate of the transitory change regressor (see details).

zeroended Boolean indicating if the regressor should end by 0 (zeroended = TRUE, default)
or 1 (zeroended = FALSE), argument valid only for LS and SO.

Details

An additive outlier (AO, ao_variable) is defined as:

AOt =

{
1 if t = t0

0 if t ̸= t0

A level shift (LS, ls_variable) is defined as (if zeroended = TRUE):

LSt =

{
−1 if t < t0

0 if t ≥ t0

A transitory change (TC, tc_variable) is defined as:

TCt =

{
0 if t < t0

αt−t0 t ≥ t0

A seasonal outlier (SO, so_variable) is defined as (if zeroended = TRUE):

SOt =


0 if t ≥ t0

−1 if t < t0 and t same periode as t0
− 1

s−1 otherwise

Value

a ts object

Examples

# Outliers in February 2002
ao <- ao_variable(12, c(2000, 1), length = 12 * 4, date = "2002-02-01")
ls <- ls_variable(12, c(2000, 1), length = 12 * 4, date = "2002-02-01")
tc <- tc_variable(12, c(2000, 1), length = 12 * 4, date = "2002-02-01")
so <- so_variable(12, c(2000, 1), length = 12 * 4, date = "2002-02-01")
plot.ts(ts.union(ao, ls, tc, so),

plot.type = "single",
col = c("black", "orange", "green", "gray")

)



56 periodic_cspline

periodic_bsplines Periodic B-Splines

Description

Periodic B-Splines

Usage

periodic_bsplines(order = 4, period = 1, knots, pos)

Arguments

order Order of the splines (4 for cubic)

period Period of the splines (1 by default)

knots Knots of the splines (in [0, period[)

pos Requested positions (in [0, period[). The rows of the returned matrix will corre-
spond to those positions

Value

A matrix (len(pos) x len(knots))

Examples

s<-periodic_bsplines(knots = c(0,.2,.3, .9,.95), pos=seq(0,1,0.01))
matplot(s, type='l')

periodic_cspline Periodic cubic spline

Description

Periodic cubic spline

Usage

periodic_cspline(x, y, pos)

Arguments

x Abscissas of the knots

y Ordinates of the knots

pos Requested positions



periodic_csplines 57

Value

An array corresponding to the values of the spline at the requested positions

Examples

s<-periodic_cspline(x = c(0,.2,.3, .9,.95, 1), y= c(1,3,8,5,12, 1), pos=seq(0,1,0.01))
plot(s, type='l')

periodic_csplines Periodic cardinal cubic splines

Description

Periodic cardinal cubic splines

Usage

periodic_csplines(x, pos)

Arguments

x Abscissas of the knots

pos Requested positions

Value

A matrix (len(pos) x len(knots))

Examples

s<-periodic_csplines(x = c(0,.2,.3, .9,.95, 1), pos=seq(0,1,0.01))
matplot(s, type='l')



58 periodic_dummies

periodic_dummies Periodic dummies and contrasts

Description

Periodic dummies and contrasts

Usage

periodic_dummies(frequency, start, length, s)

periodic_contrasts(frequency, start, length, s)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

Details

The function periodic_dummies() creates as many time series as types of periods in a year (4
or 12) with the value one only for one given type of period (ex Q1) The periodic_contrasts()
function is based on periodic_dummies but adds -1 to the period preceding a 1.

Value

a mts object with frequency column

Examples

# periodic dummies for a quarterly series
p <- periodic_dummies(4, c(2000, 1), 60)
# periodic contrasts for a quarterly series
q <- periodic_contrasts(4, c(2000, 1), 60)
q[1:9, ]



print_calendars 59

print_calendars Calendars Print Methods

Description

Print functions for calendars

Usage

## S3 method for class 'JD3_FIXEDDAY'
print(x, ...)

## S3 method for class 'JD3_FIXEDWEEKDAY'
print(x, ...)

## S3 method for class 'JD3_EASTERDAY'
print(x, ...)

## S3 method for class 'JD3_SPECIALDAY'
print(x, ...)

## S3 method for class 'JD3_SINGLEDAY'
print(x, ...)

## S3 method for class 'JD3_CALENDAR'
print(x, ...)

## S3 method for class 'JD3_CHAINEDCALENDAR'
print(x, ...)

## S3 method for class 'JD3_WEIGHTEDCALENDAR'
print(x, ...)

Arguments

x The object.

... other unused parameters.

Value

The object is returned invisibly.



60 ramp_variable

r2jd_calendarts Create Java CalendarTimeSeries

Description

Create Java CalendarTimeSeries

Usage

r2jd_calendarts(calendarobs)

Arguments

calendarobs list.

Value

a Java object

Examples

# example code
obs <- list(

list(start = as.Date("1980-01-01"), end = as.Date("1999-12-31"), value = 2000),
list(start = as.Date("2000-01-01"), end = as.Date("2010-01-01"), value = 1000)

)
jobj <- r2jd_calendarts(obs)

ramp_variable Ramp regressor

Description

Ramp regressor

Usage

ramp_variable(frequency, start, length, s, range)



rangemean_tstat 61

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

range the range of the regressor. A vector of length 2 containing the datesin the format
"YYYY-MM-DD" or the position in the series, in number of periods from counting
from the series start.

Details

A ramp between two dates t0 and t1 is defined as:

RPt =


−1 if t ≥ t0
t−t0
t1−t0

− 1 t0 < t < t1

0 t ≤ t1

Value

a ts object

Examples

# Ramp variable from January 2001 to September 2001
rp <- ramp_variable(12, c(2000, 1), length = 12 * 4, range = c(13, 21))
# Or equivalently
rp <- ramp_variable(12, c(2000, 1), length = 12 * 4, range = c("2001-01-01", "2001-09-02"))
plot.ts(rp)

rangemean_tstat Range-Mean Regression

Description

Function to perform a range-mean regression, trimmed to avoid outlier distortion. The can be used
to select whether the original series will be transformed into log or maintain in level.

Usage

rangemean_tstat(data, period = 0, groupsize = 0, trim = 0)



62 rangemean_tstat

Arguments

data data to test.

period periodicity of the data.

groupsize number of observations per group (before being trimmed). The default group
size (groupsize = 0) is computed as followed:

• if period = 12 or period = 6, it is equal to 12;
• if period = 4 it is equal to 12 if the data has at least 166 observations, 8

otherwise;
• if period = 3 or period = 2 it is equal to 12 if the data has at least 166

observations, 6 otherwise;
• if period = 1 it is equal to 9 if the data has at least 166 observations, 5

otherwise;
• it is equal to period otherwise.

trim number of trimmed observations.

Details

First, the data is divided into n groups of successive observations of length l (groupsize). That is,
the first group is formed with the first l observations, the second group is formed with observations
1+ l to 2l, etc. Then, for each group i, the observations are sorted and the trim smallest and largest
observations are rejected (to avoid outlier distortion). With the other observations, the range (noted
yi) and mean (noted mi) are computed.

Finally, the following regression is performed :

yt = α+ βmt + ut.

The function rangemean_tstat returns the T-statistic associated to β. If it is significantly higher
than 0, log transformation is recommended.

Value

T-Stat of the slope of the range-mean regression.

Examples

y <- ABS$X0.2.09.10.M
# Multiplicative pattern
plot(y)
period <- 12
rm_t <- rangemean_tstat(y, period = period, groupsize = period)
rm_t # higher than 0
# Can be tested:
pt(rm_t, period - 2, lower.tail = FALSE)
# Or :
1 - cdf_t(period - 2, rm_t)

# Close to 0
rm_t_log <- rangemean_tstat(log(y), period = period, groupsize = period)



reload_dictionaries 63

rm_t_log
pt(rm_t_log, period - 2, lower.tail = FALSE)

reload_dictionaries Reload dictionaries

Description

Reload dictionaries

Usage

reload_dictionaries()

Value

invisibly NULL

Examples

reload_dictionaries()

Retail US Retail trade statistics

Description

US Retail trade statistics

Usage

Retail

Format

An object of class list of length 62.

Source

US-Census Bureau

Examples

data(Retail)



64 runstests

runstests Runs Tests around the mean or the median

Description

Functions to compute runs test around the mean or the median (testofruns) or up and down runs
test (testofupdownruns) to check randomness of a data.

Usage

testofruns(data, mean = TRUE, number = TRUE)

testofupdownruns(data, number = TRUE)

Arguments

data data being tested.

mean If TRUE, runs around the mean. Otherwise, runs around the median.

number If TRUE, test the number of runs. Otherwise, test the lengths of the runs.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Functions

• testofruns(): Runs test around mean or median

• testofupdownruns(): up and down runs test

Examples

x <- random_t(5, 1000)
# random values
testofruns(x)
testofupdownruns(x)
# non-random values
testofruns(ABS$X0.2.09.10.M)
testofupdownruns(ABS$X0.2.09.10.M)



sadecomposition 65

sadecomposition Generic Function for Seasonal Adjustment Decomposition

Description

Generic function to format the seasonal adjustment decomposition components. sa_decomposition()
is a generic function defined in other packages.

Usage

sadecomposition(y, sa, t, s, i, mul)

## S3 method for class 'JD3_SADECOMPOSITION'
print(x, n_last_obs = frequency(x$series), ...)

## S3 method for class 'JD3_SADECOMPOSITION'
plot(
x,
first_date = NULL,
last_date = NULL,
type_chart = c("sa-trend", "seas-irr"),
caption = c(`sa-trend` = "Y, Sa, trend", `seas-irr` = "Sea., irr.")[type_chart],
colors = c(y = "#F0B400", t = "#1E6C0B", sa = "#155692", s = "#1E6C0B", i = "#155692"),
...

)

sa_decomposition(x, ...)

Arguments

y, sa, t, s, i, mul seasonal adjustment decomposition parameters.

x the object to print.

n_last_obs number of observations to print (by default equal to the frequency of the series).

... further arguments.
first_date, last_date

first and last date to plot (by default all the data is used).

type_chart the chart to plot: "sa-trend" (by default) plots the input time series, the sea-
sonally adjusted and the trend; "seas-irr" plots the seasonal and the irregular
components.

caption the caption of the plot.

colors the colours used in the plot.

Value

"JD3_SADECOMPOSITION" object.



66 sarima_decompose

Examples

decompo <- sadecomposition(
y = ts(c(112, 118, 132, 129, 121, 135), start = 2000, frequency = 12L),

sa = ts(c(121.72, 124.52, 125.4, 128.91, 128.84, 126.73), start = 2000, frequency = 12L),
t = ts(c(122.24, 124.33, 126.21, 127.61, 127.8, 126.94), start = 2000, frequency = 12L),
s = ts(c(0.92, 0.95, 1.05, 1, 0.94, 1.07), start = 2000, frequency = 12L),
i = ts(c(1, 1, 0.99, 1.01, 1.01, 1), start = 2000, frequency = 12L),
mul = TRUE

)
print(decompo)
plot(decompo)

sarima_decompose Decompose SARIMA Model into three components trend, seasonal,
irregular

Description

Decompose SARIMA Model into three components trend, seasonal, irregular

Usage

sarima_decompose(model, rmod = 0, epsphi = 0)

Arguments

model SARIMA model to decompose.

rmod trend threshold.

epsphi seasonal tolerance (in degrees).

Value

An UCARIMA model

Examples

model <- sarima_model(period = 12, d = 1, bd = 1, theta = -0.6, btheta = -0.5)
ucm <- sarima_decompose(model)



sarima_estimate 67

sarima_estimate Estimate SARIMA Model

Description

Estimate SARIMA Model

Usage

sarima_estimate(
x,
order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
mean = FALSE,
xreg = NULL,
eps = 1e-09

)

Arguments

x an univariate time series (class Ts object).

order vector specifying of the non-seasonal part of the ARIMA model: the AR order,
the degree of differencing, and the MA order.

seasonal specification of the seasonal part of the ARIMA model and the seasonal fre-
quency (by default equals to frequency(x)). Either a list with components
order and period or a numeric vector specifying the seasonal order (the de-
fault period is then used).

mean should the SARIMA model include an intercept term.

xreg vector or matrix of external regressors.

eps precision.

Value

An object of class JD3_SARIMA_ESTIMATE containing:

• the estimated parameters,

• the raw data,

• the regressors,

• the standard errors,

• the log-likelihood (with the number of observations, the number of effective observations, the
number of parameters, the log-likelihood, the adjusted log-likelihood, the AIC, the AICC, the
BIC, the BICC, and the sum of squares),

• the residuals,

• the orders of the model.



68 sarima_hannan_rissanen

Examples

y <- ABS$X0.2.09.10.M
sarima_estimate(y, order = c(0, 1, 1), seasonal = c(0, 1, 1))

sarima_hannan_rissanen

Estimate ARIMA Model with Hannan-Rissanen method

Description

Estimate ARIMA Model with Hannan-Rissanen method

Usage

sarima_hannan_rissanen(
x,
order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
initialization = c("Ols", "Levinson", "Burg"),
biasCorrection = TRUE,
finalCorrection = TRUE

)

Arguments

x an univariate time series (TS object).
order vector specifying of the non-seasonal part of the ARIMA model: the AR order,

the degree of differencing, and the MA order.
seasonal specification of the seasonal part of the ARIMA model and the seasonal fre-

quency (by default equals to frequency(x)). Either a list with components
order and period or a numeric vector specifying the seasonal order (the de-
fault period is then used).

initialization Algorithm used in the computation of the long order auto-regressive model (used
to estimate the innovations)

biasCorrection Bias correction
finalCorrection

Final correction as implemented in Tramo

Value

An object of class JD3_SARIMA with the estimated coefficient.

Examples

y <- ABS$X0.2.09.10.M
model<- sarima_hannan_rissanen(y, order = c(0, 1, 1), seasonal = c(0, 1, 1))



sarima_model 69

sarima_model Seasonal ARIMA model (Box-Jenkins)

Description

Seasonal ARIMA model (Box-Jenkins)

Usage

sarima_model(
name = "sarima",
period,
phi = NULL,
d = 0,
theta = NULL,
bphi = NULL,
bd = 0,
btheta = NULL

)

Arguments

name name of the model.

period period of the model.

phi coefficients of the regular auto-regressive polynomial (1 + ϕ1B + ϕ2B + ...).
True signs.

d regular differencing order.

theta coefficients of the regular moving average polynomial (1 + θ1B + θ2B + ...).
True signs.

bphi coefficients of the seasonal auto-regressive polynomial. True signs.

bd seasonal differencing order.

btheta coefficients of the seasonal moving average polynomial. True signs.

Value

A "JD3_SARIMA" model.

Examples

mod1 <- sarima_model(period = 12, d = 1, bd = 1, theta = 0.2, btheta = 0.2)



70 sarima_random

sarima_properties SARIMA Properties

Description

SARIMA Properties

Usage

sarima_properties(model, nspectrum = 601, nacf = 36)

Arguments

model a "JD3_SARIMA" model (created with sarima_model()).
nspectrum number of points in [0, pi] to calculate the spectrum.
nacf maximum lag at which to calculate the acf.

Value

List with the acf and the spectrum of the model.

Examples

mod1 <- sarima_model(period = 12, d = 1, bd = 1, theta = 0.2, btheta = 0.2)
sarima_properties(mod1)

sarima_random Simulate Seasonal ARIMA

Description

Simulate Seasonal ARIMA

Usage

sarima_random(model, length, stde = 1, tdegree = 0, seed = -1)

Arguments

model a "JD3_SARIMA" model (see sarima_model() function).
length length of the output series.
stde deviation of the normal distribution of the innovations of the simulated series.

Unused if tdegree is larger than 0.
tdegree degrees of freedom of the T distribution of the innovations. tdegree = 0 if nor-

mal distribution is used.
seed seed of the random numbers generator. Negative values mean random seeds.



sa_preprocessing 71

Value

a numeric vector with the simulated series.

Examples

# Airline model
s_model <- sarima_model(period = 12, d = 1, bd = 1, theta = 0.2, btheta = 0.2)
x <- sarima_random(s_model, length = 64, seed = 0)
plot(x, type = "l")

sa_preprocessing Generic Preprocessing Function

Description

Generic function for preprocessing defined in other packages.

Usage

sa_preprocessing(x, ...)

Arguments

x, ... parameters.

Value

a list, the preprocessing part of a model.

seasonality_canovahansen

Canova-Hansen seasonality test

Description

Canova-Hansen seasonality test

Usage

seasonality_canovahansen(
data,
period,
type = c("Contrast", "Dummy", "Trigonometric"),
lag1 = TRUE,
kernel = c("Bartlett", "Square", "Welch", "Tukey", "Hamming", "Parzen"),
order = NA,
start = 1

)



72 seasonality_canovahansen_trigs

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

type Trigonometric variables, seasonal dummies or seasonal contrasts.

lag1 Lagged variable in the regression model.

kernel Kernel used to compute the robust Newey-West covariance matrix.

order The truncation parameter used to compute the robust Newey-West covariance
matrix.

start Position of the first observation of the series

Value

list with the FTest on seasonal variables, the joint test and the details for the stability of the different
seasonal variables

Examples

s <- log(ABS$X0.2.20.10.M)
seasonality_canovahansen(s, 12, type = "Contrast")
seasonality_canovahansen(s, 12, type = "Trigonometric")

seasonality_canovahansen_trigs

Canova-Hansen test using trigonometric variables

Description

Canova-Hansen test using trigonometric variables

Usage

seasonality_canovahansen_trigs(
data,
periods,
lag1 = TRUE,
kernel = c("Bartlett", "Square", "Welch", "Tukey", "Hamming", "Parzen"),
order = NA,
original = FALSE

)



seasonality_combined 73

Arguments

data the input data.

periods Periodicities.

lag1 Lagged variable in the regression model.

kernel Kernel used to compute the robust Newey-West covariance matrix.

order The truncation parameter used to compute the robust Newey-West covariance
matrix.

original TRUE for original algorithm, FALSE for solution proposed by T. Proietti (based
on Ox code).

Value

a numeric vector

Examples

s <- log(ABS$X0.2.20.10.M)
freqs <- seq(0.01, 0.5, 0.001)
sct <- seasonality_canovahansen_trigs(s, 1 / freqs, original = FALSE)
plot(sct, type = "l")

seasonality_combined "X12" Test On Seasonality

Description

"X12" Test On Seasonality

Usage

seasonality_combined(
data,
period = NA,
firstperiod = cycle(data)[1],
mul = TRUE

)

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

firstperiod Position in a cycle of the first obs. For example, for a monthly, firstperiod =
1 means January. If data is not a "ts" object, firstperiod = 1 by default.

mul boolean indicating if the seasonal decomposition is multiplicative (mul = TRUE)
or additive (mul = FALSE).



74 seasonality_f

Details

Combined test on the presence of identifiable seasonality (see Ladiray and Quenneville, 1999).

Value

a list with several seasonnality tests (kruskalwallis, stable and evolutive)

Examples

s <- do_stationary(log(ABS$X0.2.09.10.M))$ddata
seasonality_combined(s)
seasonality_combined(random_t(2, 1000), 7)

seasonality_f F-test on seasonal dummies

Description

F-test on seasonal dummies

Usage

seasonality_f(data, period = NA, model = c("AR", "D1", "WN"), nyears = 0)

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

model the model to use for the residuals.

nyears Number of periods or number of cycles considered in the test, at the end of the
series: in periods (positive value) or years (negative values). By default (nyears
= 0), the entire sample is used.

Details

Estimation of a model with seasonal dummies. Joint F-test on the coefficients of the dummies.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

seasonality_f(ABS$X0.2.09.10.M, model = "D1")
seasonality_f(random_t(2, 1000), 7)



seasonality_friedman 75

seasonality_friedman Friedman Seasonality Test

Description

Friedman Seasonality Test

Usage

seasonality_friedman(data, period = NA, nyears = 0)

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

nyears Number of periods or number of cycles considered in the test, at the end of the
series: in periods (positive value) or years (negative values). By default (nyears
= 0), the entire sample is used.

Details

Non parametric test ("ANOVA"-type).

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

s <- do_stationary(log(ABS$X0.2.09.10.M))$ddata
seasonality_friedman(s)
seasonality_friedman(random_t(2, 1000), 12)

seasonality_kruskalwallis

Kruskall-Wallis Seasonality Test

Description

Kruskall-Wallis Seasonality Test

Usage

seasonality_kruskalwallis(data, period, nyears = 0)



76 seasonality_modified_qs

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

nyears Number of periods or number of cycles considered in the test, at the end of the
series: in periods (positive value) or years (negative values). By default (nyears
= 0), the entire sample is used.

Details

Non parametric test on the ranks.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

s <- do_stationary(log(ABS$X0.2.09.10.M))$ddata
seasonality_kruskalwallis(s)
seasonality_kruskalwallis(random_t(2, 1000), 7)

seasonality_modified_qs

Modified QS Seasonality Test (Maravall)

Description

Modified QS Seasonality Test (Maravall)

Usage

seasonality_modified_qs(data, period = NA, nyears = 0)

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

nyears Number of periods or number of cycles considered in the test, at the end of the
series: in periods (positive value) or years (negative values). By default (nyears
= 0), the entire sample is used.

Details

Thresholds for p-values: p.9=2.49, p.95=3.83, p.99=7.06, p.999=11.88. Computed on 100.000.000
random series (different lengths). Remark: the length of the series has some impact on the p-values,
mainly on short series. Not critical.



seasonality_periodogram 77

Value

The value of the test

Examples

s <- do_stationary(log(ABS$X0.2.09.10.M))$ddata
seasonality_modified_qs(s)

seasonality_periodogram

Periodogram Seasonality Test

Description

Periodogram Seasonality Test

Usage

seasonality_periodogram(data, period = NA, nyears = 0)

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

nyears Number of periods or number of cycles considered in the test, at the end of the
series: in periods (positive value) or years (negative values). By default (nyears
= 0), the entire sample is used.

Details

Tests on the sum of a periodogram at seasonal frequencies.

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

s <- do_stationary(log(ABS$X0.2.09.10.M))$ddata
seasonality_periodogram(s)
seasonality_periodogram(random_t(2, 1000), 7)



78 set_arima

seasonality_qs QS (seasonal Ljung-Box) test.

Description

QS (seasonal Ljung-Box) test.

Usage

seasonality_qs(data, period = NA, nyears = 0, type = 1)

Arguments

data the input data.

period Tested periodicity. Can be missing if the input is a time series

nyears Number of periods or number of cycles considered in the test, at the end of the
series: in periods (positive value) or years (negative values). By default (nyears
= 0), the entire sample is used.

type 1 for positive autocorrelations, -1 for negative autocorrelations, 0 for all auto-
correlations. By default (type = 1)

Value

A c("JD3_TEST", "JD3") object (see statisticaltest() for details).

Examples

s <- do_stationary(log(ABS$X0.2.09.10.M))$ddata
seasonality_qs(s)
seasonality_qs(random_t(2, 1000), 7)

set_arima Set ARIMA Model Structure in Pre-Processing Specification

Description

Function allowing to customize the ARIMA model structure when the automatic modelling is dis-
abled.(see example)



set_arima 79

Usage

set_arima(
x,
mean = NA,
mean.type = c(NA, "Undefined", "Fixed", "Initial"),
p = NA,
d = NA,
q = NA,
bp = NA,
bd = NA,
bq = NA,
coef = NA,
coef.type = c(NA, "Undefined", "Fixed", "Initial")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

mean to fix the coefficient of the mean. If mean = 0, the mean is disabled.

mean.type a character defining the mean coefficient estimation procedure. Possible pro-
cedures are: "Undefined" = no use of any user-defined input (i.e. coefficient
is estimated), "Fixed" = the coefficients are fixed at the value provided by the
user, "Initial" = the value defined by the user is used as the initial condition.

p, d, q, bp, bd, bq to specify the order of the SARIMA model in the form ARIMA(p,d,q)(bp,bd,bd).

coef a vector providing the coefficients for the regular and seasonal AR and MA
polynomials. The vector length must be equal to the sum of the regular and
seasonal AR and MA orders. The coefficients shall be provided in the follow-
ing order: regular AR (Phi; p elements), regular MA (Theta; q elements), sea-
sonal AR (BPhi; bp elements) and seasonal MA (BTheta; bq elements). E.g.:
arima.coef=c(0.6,0.7) with p=1, q=0,bp=1 and bq=0.

coef.type a vector defining the ARMA coefficients estimation procedure. Possible pro-
cedures are: "Undefined" = no use of any user-defined input (i.e. coefficients
are estimated), "Fixed" = the coefficients are fixed at the value provided by the
user, "Initial" = the value defined by the user is used as the initial condition.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

Value

The modified specification (with new ARIMA model)



80 set_automodel

References

More information on reg-arima modelling in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

set_automodel, set_transform

Examples

# Customize a default specification
init_spec <- x13_spec_default

# Disable automatic arima modelling
new_spec <- set_automodel(init_spec, enabled = FALSE)

# Customize arima model
new_spec <- set_arima(

x = new_spec,
mean = 0.2,
mean.type = "Fixed",
p = 1,
d = 2,
q = 0,
bp = 1,
bd = 1,
bq = 0,
coef = c(0.6, 0.7),
coef.type = c("Initial", "Fixed")

)

set_automodel Set Arima Model Identification in Pre-Processing Specification

Description

Function allowing to customize Arima model identification procedure.

Usage

set_automodel(
x,
enabled = NA,
acceptdefault = NA,
cancel = NA,
ub1 = NA,
ub2 = NA,
reducecv = NA,

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


set_automodel 81

ljungboxlimit = NA,
tsig = NA,
ubfinal = NA,
checkmu = NA,
mixed = NA,
balanced = NA,
amicompare = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

enabled logical. If TRUE, the automatic modelling of the ARIMA model is enabled. If
FALSE, the parameters of the ARIMA model can be specified.

acceptdefault logical. If TRUE, the default model (ARIMA(0,1,1)(0,1,1)) will be chosen in
the first step of the automatic model identification, if the Ljung-Box Q statistics
for the residuals are acceptable. No further attempt will be made to identify a
better model. Default = FALSE

cancel numeric cancellation limit. A limit for the AR and the MA roots to be assumed
equal. This option is used in the automatic identification of the differencing
order. If the difference in moduli of an AR and an MA root (when estimating
ARIMA(1,0,1)(1,0,1) models in the second step of the automatic identification
of the differencing polynomial) is smaller than cancellation limit, the two roots
cancel out. Default = 0.1.

ub1 numeric, the first unit root limit. It is the threshold value for the initial unit
root test in the automatic differencing procedure. When one of the roots in the
estimation of the ARIMA(2,0,0)(1,0,0) plus mean model, performed in the first
step of the automatic model identification procedure, is larger than first unit root
limit in modulus, it is set equal to unity. Default = 1.030928.

ub2 numeric, the second unit root limit. When one of the roots in the estimation of
the ARIMA(1,0,1)(1,0,1) plus mean model, which is performed in the second
step of the automatic model identification procedure, is larger than second unit
root limit in modulus, it is checked if there is a common factor in the corre-
sponding AR and MA polynomials of the ARMA model that can be cancelled
(see automdl.cancel). If there is no cancellation, the AR root is set equal to
unity (i.e. the differencing order changes). Default = 1.136364.

reducecv numeric, ReduceCV. The percentage by which the outlier critical value will be
reduced when an identified model is found to have a Ljung-Box statistic with
an unacceptable confidence coefficient. The parameter should be between 0 and
1, and will only be active when automatic outlier identification is enabled. The
reduced critical value will be set to (1 - ReduceCV) x CV, where CV is the
original critical value. Default = 0.14268.

ljungboxlimit numeric, the Ljung Box limit, setting the acceptance criterion for the confi-
dence intervals of the Ljung-Box Q-statistic. If the LjungBox Q statistics for the
residuals of a final model is greater than Ljung Box limit, then the model is re-
jected, the outlier critical value is reduced, and model and outlier identification
(if specified) is redone with a reduced value. Default = 0.95.



82 set_automodel

tsig numeric, the arma limit. It is the threshold value for t-statistics of ARMA coef-
ficients and the constant term used for the final test of model parsimony. If the
highest order ARMA coefficient has a t-value smaller than this value in magni-
tude, the order of the model is reduced. If the constant term has a t-value smaller
than the ARMA limit in magnitude, it is removed from the set of regressors. De-
fault=1.

ubfinal (REGARIMA/X13 Specific) numeric, final unit root limit. The threshold value
for the final unit root test. If the magnitude of an AR root for the final model is
smaller than the final unit root limit, then a unit root is assumed, the order of the
AR polynomial is reduced by one and the appropriate order of the differencing
(non-seasonal, seasonal) is increased. The parameter value should be greater
than one. Default = 1.05.

checkmu (REGARIMA/X13 Specific) logical indicating if the automatic model selec-
tion checks the significance of the constant term.

mixed (REGARIMA/X13 Specific) logical. This variable controls whether ARIMA
models with non-seasonal AR and MA terms or seasonal AR and MA terms
will be considered in the automatic model identification procedure. If FALSE, a
model with AR and MA terms in both the seasonal and non-seasonal parts of
the model can be acceptable, provided there are no AR or MA terms in either
the seasonal or non-seasonal terms.

balanced (REGARIMA/X13 Specific) logical If TRUE, the automatic model identifica-
tion procedure will have a preference for balanced models (i.e. models for which
the order of the combined AR and differencing operators is equal to the order of
the combined MA operators). Default = FALSE

amicompare (TRAMO Specific) logical. If TRUE, the program compares the model identi-
fied by the automatic procedure to the default model (ARIMA(0, 1, 1)(0, 1, 1))
and the model with the best fit is selected. Criteria considered are residual diag-
nostics, the model structure and the number of outliers.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

Value

The modified specification (with new ARIMA parameters)

References

More information on reg-arima modelling in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

set_arima, set_transform

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


set_basic 83

Examples

# Customize a default specification
init_spec <- x13_spec_default
new_spec <- set_automodel(x = init_spec, enabled = FALSE, acceptdefault = TRUE)

set_basic Set estimation sub-span and quality check specification

Description

Function allowing to check if the series can be processed and to define a sub-span on which estima-
tion will be performed

Usage

set_basic(
x,
type = c(NA, "All", "From", "To", "Between", "Last", "First", "Excluding"),
d0 = NULL,
d1 = NULL,
n0 = 0,
n1 = 0,
preliminary.check = NA,
preprocessing = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).
type, d0, d1, n0, n1

parameters to specify the sub-span .
d0 and d1 characters in the format "YYYY-MM-DD" to specify first/last date of
the span when type equals to "From", "To" or "Between". Date corresponding
to d0 will be included in the sub-span Date corresponding to d1 will be excluded
from the sub span
n0 and n1 numeric to specify the number of periods at the beginning/end of the
series to be used for defining the sub-span (type equals to "First", "Last") or
to exclude (type equals to "Excluding").

preliminary.check

a Boolean to check the quality of the input series and exclude highly problematic
ones (e.g. the series with a number of identical observations and/or missing
values above pre-specified threshold values).

preprocessing (REGARIMA/X13 Specific) a Boolean to enable/disable the pre-processing.
Option disabled for the moment.



84 set_basic

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

Value

The modified specification with new estimation span

References

More information in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

set_estimate, set_arima

Examples

# Customize a default specification
init_spec <- x13_spec_default

# Estimation on sub-span between two dates (date d1 is excluded)
new_spec <- set_basic(

init_spec,
type = "Between",
d0 = "2014-01-01",
d1 = "2019-01-01",
preliminary.check = TRUE,
preprocessing = TRUE

)

# Estimation on the first 60 observations
new_spec <- set_basic(

init_spec,
type = "First",
n0 = 60,
preliminary.check = TRUE,
preprocessing = TRUE

)

# Estimation on the last 60 observations
new_spec <- set_basic(

init_spec,
type = "Last",
n1 = 60,
preliminary.check = TRUE,
preprocessing = TRUE

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


set_benchmarking 85

)

# Estimation excluding 60 observations at the beginning and 36 at the end of the series
new_spec <-set_basic(

init_spec,
type = "Excluding",
n0 = 60,
n1 = 36,
preliminary.check = TRUE,
preprocessing = TRUE

)

set_benchmarking Set Benchmarking Specification

Description

Function allowing to perform a benchmarking procedure after the decomposition step in a seasonal
adjustment (disabled by default). Here benchmarking refers to a procedure ensuring consistency
over the year between seasonally adjusted and raw (or calendar adjusted) data, as seasonal ad-
justment can cause discrepancies between the annual totals of seasonally adjusted series and the
corresponding annual totals of raw (or calendar adjusted) series.

Usage

set_benchmarking(
x,
enabled = NA,
target = c(NA, "CalendarAdjusted", "Original"),
rho = NA,
lambda = NA,
forecast = NA,
bias = c("None", "Additive", "Multiplicative")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

enabled Boolean to enable the user to perform benchmarking.

target specifies the target series for the benchmarking procedure, which can be the raw
series ("Normal"); or the series adjusted for calendar effects ("CalendarAdjusted").

rho the value of the AR(1) parameter (set between 0 and 1) in the function used for
benchmarking. Default =1.

lambda a parameter in the function used for benchmarking that relates to the weights in
the regression equation; it is typically equal to 0, 1/2 or 1.



86 set_easter

forecast Boolean indicating if the forecasts of the seasonally adjusted series and of the
target variable (target) are used in the benchmarking computation so that the
benchmarking constrain is also applied to the forecasting period.

bias Character. Bias correction factor. No systematic bias is considered by default.
See vignette(topic = "rjd3bench", package = "rjd3bench") for more de-
tails.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

Value

The modified specification with new estimation span

References

More information on benchmarking in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

Examples

init_spec <- x13_spec_default
new_spec <- set_benchmarking(

x = init_spec,
enabled = TRUE,
target = "Original",
rho = 0.8,
lambda = 0.5,
forecast = FALSE,
bias = "None"

)

set_easter Set Easter effect correction in Pre-Processing Specification

Description

Set Easter effect correction in Pre-Processing Specification

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


set_easter 87

Usage

set_easter(
x,
enabled = NA,
julian = NA,
duration = NA,
test = c(NA, "Add", "Remove", "None"),
coef = NA,
coef.type = c(NA, "Estimated", "Fixed"),
type = c(NA, "Unused", "Standard", "IncludeEaster", "IncludeEasterMonday")

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

enabled a logical indicating if the program considers the Easter effect in the pre-processing
model. Default = TRUE.

julian a logical indicating if the program uses the Julian Easter (expressed in Gregorian
calendar).

duration a numeric indicating the duration of the Easter effect (length in days, between 1
and 20). Default value = 8 in REGARIMA/X-13 and 6 in TRAMO.

test defines the pre-tests for the significance of the Easter effect based on the t-
statistic (the Easter effect is considered as significant if the t-statistic is greater
than 1.96): "Add" = the Easter effect variable is not included in the initial regres-
sion model but can be added to the RegARIMA model after the test; "Remove"
= the Easter effect variable belongs to the initial regression model but can be
removed from the RegARIMA model after the test; "None" = the Easter effect
variable is not pre-tested and is included in the model.

coef to set the coefficient of the easter regressor.(Test parameter has to be set to
"None")

coef.type a character defining the easter regressor coefficient estimation procedure. Pos-
sible procedures are: "Estimated" = coefficient is estimated, "Fixed" = the
coefficients is fixed. By default the coefficient is estimated.

type (TRAMO specific) a character that specifies the presence and the length of the
Easter effect: "Unused" = the Easter effect is not considered; "Standard" = in-
fluences the period of n days strictly before Easter Sunday; "IncludeEaster" =
influences the entire period (n) up to and including Easter Sunday; "IncludeEasterMonday"
= influences the entire period (n) up to and including Easter Monday.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).



88 set_estimate

Value

The modified specification (with new easter parameters)

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

easter_variable, easter_day

Examples

# Customize a default specification
init_spec <- x13_spec_default
new_spec <- set_easter(

x = init_spec,
enabled = TRUE,
duration = 12,
test = "None",
type = "IncludeEasterMonday"

)

set_estimate Set Numeric Estimation Parameters and Modelling Span

Description

Function allowing to define numeric boundaries for estimation and to define a sub-span on which
reg-arima (tramo) modelling will be performed (pre-processing step)

Usage

set_estimate(
x,
type = c(NA, "All", "From", "To", "Between", "Last", "First", "Excluding"),
d0 = NULL,
d1 = NULL,
n0 = 0,
n1 = 0,
tol = NA,
exact.ml = NA,
unit.root.limit = NA

)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


set_estimate 89

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

type, d0, d1, n0, n1
parameters to specify the sub-span .

d0 and d1 characters in the format "YYYY-MM-DD" to specify first/last date of
the span when type equals to "From", "To" or "Between". Date corresponding
to d0 will be included in the sub-span Date corresponding to d1 will be excluded
from the sub span

n0 and n1 numeric to specify the number of periods at the beginning/end of the
series to be used for defining the sub-span (type equals to "First", "Last") or
to exclude (type equals to "Excluding").

tol a numeric, convergence tolerance. The absolute changes in the log-likelihood
function are compared to this value to check for the convergence of the estima-
tion iterations. (The default setting is 0.0000001)

exact.ml (TRAMO specific) logical, the exact maximum likelihood estimation. If TRUE,
the program performs an exact maximum likelihood estimation. If FASLE, the
Unconditional Least Squares method is used. (Default=TRUE)

unit.root.limit

(TRAMO specific) numeric, the final unit root limit. The threshold value for
the final unit root test for identification of differencing orders. If the magnitude
of an AR root for the final model is smaller than this number, then a unit root is
assumed, the order of the AR polynomial is reduced by one and the appropriate
order of the differencing (non-seasonal, seasonal) is increased.(Default value:
0.96)

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

Value

The modified specification (with new estimation parameters)

References

More in JDemetra+ online documentation: https://jdemetra-new-documentation.netlify.
app/

See Also

set_basic, set_arima

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


90 set_outlier

Examples

# Customize a default specification
init_spec <- tramoseats_spec_default
new_spec <- set_estimate(

x = init_spec,
type = "From",
d0 = "2012-01-01",
tol = 0.0000002,
exact.ml = FALSE,
unit.root.limit = 0.98

)

set_outlier Set Outlier Detection Parameters

Description

Function allowing to customize the automatic outlier detection process built in in the pre-processing
step (regarima or tramo).

Usage

set_outlier(
x,
span.type = c(NA, "All", "From", "To", "Between", "Last", "First", "Excluding"),
d0 = NULL,
d1 = NULL,
n0 = 0,
n1 = 0,
outliers.type = NA,
critical.value = NA,
tc.rate = NA,
method = c(NA, "AddOne", "AddAll"),
maxiter = NA,
lsrun = NA,
eml.est = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).
span.type, d0, d1, n0, n1

parameters to specify the sub-span on which outliers will be detected.

• d0 and d1 characters in the format "YYYY-MM-DD" to specify first/last
date of the span when type equals to "From", "To" or "Between".



set_outlier 91

• n0 and n1 numerics to specify the number of periods at the beginning/end
of the series to be used for the span (type equals to "From", "To") or to
exclude (type equals to "Excluding").

outliers.type vector of characters of the outliers to be automatically detected.

• "AO" for additive outliers,
• "TC" for transitory changes,
• "LS" for level shifts,
• "SO" for seasonal outliers. For example outliers.type = c("AO", "LS")

to enable the detection of additive outliers and level shifts. If outliers.type
= NULL or outliers.type = character(), automatic detection of outliers
is disabled. Default value = outliers.type = c("AO", "LS", "TC")

critical.value numeric. Critical value for the outlier detection procedure. If equal to 0 the
critical value is automatically determined by the number of observations in the
outlier detection time span. (Default value = 4 REGARIMA/X13 and 3.5 in
TRAMO)

tc.rate the rate of decay for the transitory change outlier. (Default = 0.7).

method (REGARIMA/X13 Specific) determines how the program successively adds de-
tected outliers to the model. Currently, only the "AddOne" method is supported.

maxiter (REGARIMA/X13 Specific) maximum number of iterations (Default = 30).

lsrun (REGARIMA/X13 Specific) number of successive level shifts to test for cancel-
lation (Default = 0).

eml.est (TRAMO Specific) logical for the exact likelihood estimation method. It con-
trols the method applied for parameter estimation in the intermediate steps. If
TRUE, an exact likelihood estimation method is used. When FALSE, the fast
Hannan-Rissanen method is used.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

If a Seasonal adjustment process is performed, each type of Outlier will be allocated to a pre-defined
component after the decomposition: "AO" and "TC" to the irregular, "LS" to the trend and "SO" to
seasonal component.

Value

The modified specification (with new outlier parameters)

References

More information on outliers and other auxiliary variables in JDemetra+ online documentation:
https://jdemetra-new-documentation.netlify.app/

https://jdemetra-new-documentation.netlify.app/


92 set_tradingdays

See Also

add_outlier, add_usrdefvar

Examples

# Customize a default specification
init_spec <- tramoseats_spec_default
new_spec <- set_outlier(

x = init_spec,
span.type = "From",
d0 = "2012-01-01",
outliers.type = c("LS", "AO"),
critical.value = 5,
tc.rate = 0.85

)

set_tradingdays Set Calendar effects correction in Pre-Processing Specification

Description

Function allowing to select the trading-days regressors to be used for calendar correction in the
pre-processing step of a seasonal adjustment procedure. The default is "TradingDays", with easter
specific effect enabled. (see set_easter)

All the built-in regressors are meant to correct for type of day effect but don’t take into account any
holiday. To do so user-defined regressors have to be built.

Usage

set_tradingdays(
x,
option = c(NA, "TradingDays", "WorkingDays", "TD2c", "TD3", "TD3c", "TD4", "None",

"UserDefined"),
calendar.name = NA,
uservariable = NA,
stocktd = NA,
test = c(NA, "None", "Remove", "Add", "Separate_T", "Joint_F"),
coef = NA,
coef.type = c(NA, "Fixed", "Estimated"),
automatic = c(NA, "Unused", "FTest", "WaldTest", "Aic", "Bic"),
pftd = NA,
autoadjust = NA,
leapyear = c(NA, "LeapYear", "LengthOfPeriod", "None"),
leapyear.coef = NA,
leapyear.coef.type = c(NA, "Fixed", "Estimated")

)



set_tradingdays 93

Arguments

x the specification to customize, must be a "SPEC" class object (see details).

option to specify the set of trading days regression variables:

• "TradingDays" = six contrast variables, each type of day (from Monday to
Saturday) vs Sundays;

• "WorkingDays" = one working (week days) vs non-working (week-ends)
day contrast variable;

• "TD2c" = one working (Mondays to Saturdays) vs non-working (Sundays)
day contrast variable;

• "TD3" = two contrast variables: week-days vs Sundays and Saturdays vs
Sundays;

• "TD3c" = two contrast variables: week-days (Mondays to Thursdays) vs
Sundays and Fridays+Saturdays vs Sundays;

• "TD4" = three contrast variables: week-days (Mondays to Thursdays) vs
Sundays, Fridays vs Sundays, Saturdays vs Sundays;

• "None" = no correction for trading days;
• "UserDefined" = userdefined trading days regressors.

calendar.name name (string) of the user-defined calendar to be taken into account when gener-
ating built-in regressors set in option (if not "UserDefined").(see examples)

uservariable a vector of characters to specify the name of user-defined calendar regressors.
When specified, automatically set option = "UserDefined". Names have to be
the same as in modelling_context, see example.

stocktd a numeric indicating the day of the month when inventories and other stock are
reported (to denote the last day of the month, set the variable to 31). When spec-
ified, automatically set option = "None". See stock_td function for details.

test defines the pre-tests for the significance of the trading day regression variables
based on the AICC statistics: "None" = the trading day variables are not pre-
tested and are included in the model;
(REGARIMA/X-13 specific)

• "Add" = the trading day variables are not included in the initial regression
model but can be added to the RegARIMA model after the test;

• "Remove" = the trading day variables belong to the initial regression model
but can be removed from the RegARIMA model after the test;

(TRAMO specific)

• "Separate_T" = a t-test is applied to each trading day variable separately
and the trading day variables are included in the RegArima model if at least
one t-statistic is greater than 2.6 or if two t-statistics are greater than 2.0 (in
absolute terms);

• "Joint_F" = a joint F-test of significance of all the trading day variables.
The trading day effect is significant if the F statistic is greater than 0.95.

coef vector of coefficients for the trading-days regressors.
coef.type, leapyear.coef.type

vector defining if the coefficients are fixed or estimated.



94 set_tradingdays

automatic defines whether the calendar effects should be added to the model manually
("Unused") or automatically. During the automatic selection, the choice of the
number of calendar variables can be based on the F-Test ("FTest", TRAMO
specific), the Wald Test ("WaldTest"), or by minimizing AIC or BIC; the model
with higher F-value is chosen, provided that it is higher than pftd).

pftd (TRAMO SPECIFIC) numeric. The p-value used to assess the significance of
the pre-tested calendar effects.

autoadjust a logical indicating if the program corrects automatically the raw series for the
leap year effect if the leap year regressor is significant. Only used when the data
is log transformed.

leapyear a character to specify whether or not to include the leap-year effect in the
model:

• "LeapYear" = leap year effect;
• "LengthOfPeriod" = length of period (REGARIMA/X-13 specific),
• "None" = no effect included. Default: a leap year effect regressor is in-

cluded with any built-in set of trading day regressors.

leapyear.coef coefficient of the leap year regressor.

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

Value

The modified specification (with new trading days variables)

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

modelling_context, calendar_td

Examples

# Pre-defined regressors
y_raw <- ABS$X0.2.09.10.M

# Customize a default specification
init_spec <- x13_spec_default

# Estimation on sub-span between two dates (date d1 is excluded)
new_spec <- set_tradingdays(

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


set_tradingdays 95

init_spec,
option = "TD4",
test = "None",
coef = c(0.7, NA, 0.5),
coef.type = c("Fixed", "Estimated", "Fixed"),
leapyear = "LengthOfPeriod",
leapyear.coef = 0.6

)

# Pre-defined regressors based on user-defined calendar
### create a calendar
BE <- national_calendar(list(

fixed_day(7, 21),
special_day("NEWYEAR"),
special_day("CHRISTMAS"),
special_day("MAYDAY"),
special_day("EASTERMONDAY"),
special_day("ASCENSION"),
special_day("WHITMONDAY"),
special_day("ASSUMPTION"),
special_day("ALLSAINTSDAY"),
special_day("ARMISTICE")

))
## Put into a context
my_context <- modelling_context(calendars = list(cal = BE))

## Modify the specification
new_spec <- set_tradingdays(

init_spec,
option = "TradingDays",
calendar.name = "cal"

)

## Estimate with context
# sa <- rjd3x13::x13(y_raw, new_spec, context = my_context)

regs_td <- rjd3toolkit::td(
s = y_raw,
groups = c(1, 2, 0, 4, 5, 6, 3),
contrasts = TRUE

)

variables <- list(
Monday = regs_td[, 1],
Tuesday = regs_td[, 2],
Wednesday = regs_td[, 3],
Thursday = regs_td[, 4],
Friday = regs_td[, 5],
Saturday = regs_td[, 6]

)
# Add regressors to context
my_context <- modelling_context(variables = variables)



96 set_transform

# Create a new spec (here default group name: r)
new_spec <- set_tradingdays(

init_spec,
option = "UserDefined",
uservariable = c("r.Monday", "r.Tuesday", "r.Wednesday",

"r.Thursday", "r.Friday", "r.Saturday"),
test = "None"

)

# Estimate with context
# sa <- rjd3x13::x13(y_raw, new_spec, context = my_context)

set_transform Set Log-level Transformation and Decomposition scheme in Pre-
Processing Specification

Description

Set Log-level Transformation and Decomposition scheme in Pre-Processing Specification

Usage

set_transform(
x,
fun = c(NA, "Auto", "Log", "None"),
adjust = c(NA, "None", "LeapYear", "LengthOfPeriod"),
outliers = NA,
aicdiff = NA,
fct = NA

)

Arguments

x the specification to customize, must be a "SPEC" class object (see details).
fun the transformation of the input series: "None" = no transformation of the series;

"Log" = takes the log of the series; "Auto" = the program tests for the log-level
specification.

adjust pre-adjustment of the input series for the length of period or leap year effects:
"None" = no adjustment; "LeapYear" = leap year effect; "LengthOfPeriod" =
length of period. Modifications of this variable are taken into account only when
function = "Log".

outliers Boolean indicating if a pre-correction for large outliers (AO and LS only) should
be done in the test for the log-level specification (fun = "Auto"). By default to
FALSE.

aicdiff (REGARIMA/X-13 specific) a numeric defining the difference in AICC needed
to accept no transformation when the automatic transformation selection is cho-
sen (considered only when fun = "Auto"). Default= -2.



single_day 97

fct (TRAMO specific) numeric controlling the bias in the log/level pre-test: transform.fct>
1 favours levels, transform.fct< 1 favours logs. Considered only when fun =
"Auto".

Details

x specification parameter must be a JD3_X13_SPEC" class object generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC"
generated with rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).

Value

The modified specification (with log/level transformation scheme)

References

More information in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/

See Also

set_outlier, set_tradingdays

Examples

# Customize a default specification
init_spec <- x13_spec_default
new_spec <- set_transform(x = init_spec, fun = "Log", outliers = TRUE)

single_day Set a holiday on a Single Day

Description

Allows to set a holiday as a once-occurring event.

Usage

single_day(date, weight = 1)

Arguments

date the date of the holiday in the format "YYYY-MM-DD".

weight weight associated to the holiday.

https://jdemetra-new-documentation.netlify.app/
https://jdemetra-new-documentation.netlify.app/


98 special_day

Value

returns an object of class c("JD3_SINGLEDAY","JD3_HOLIDAY") (with name of the event, date,
offset...)

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, fixed_day, special_day,easter_day

Examples

single_day("1999-03-19")

special_day List of Pre-Defined Holidays to choose from

Description

Allows to define a holiday choosing from a list of pre-specified events, equivalent to use fixed_day
or easter_day functions.

Usage

special_day(event, offset = 0, weight = 1, validity = NULL)

Arguments

event the event to add (see details).

offset The position of the holiday in relation to the selected pre-specified holiday mea-
sured in days (can be positive or negative). By default offset = 0.

weight weight associated to the holiday.

validity validity period: either NULL (full sample) or a named list with "start" and/or
"end" dates in the format "YYYY-MM-DD".

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


special_day 99

Details

Possible values :

NEWYEAR Fixed holiday, falls on January, 1st.
SHROVEMONDAY Moving holiday, falls on the Monday before Ash Wednesday (48 days before Easter Sunday).
SHROVETUESDAY Moving holiday, falls on the Tuesday before Ash Wednesday (47 days before Easter Sunday).
ASHWEDNESDAY Moving holiday, occurring 46 days before Easter Sunday.
MAUNDYTHURSDAY Moving holiday, falls on the Thursday before Easter.
GOODFRIDAY Moving holiday, falls on the Friday before Easter.
EASTER Moving holiday, falls between March 22nd and April 25th.
EASTERMONDAY Moving holiday, falls on the day after Easter.
ASCENSION Moving holiday, celebrated on a Thursday, 39 days after Easter.
PENTECOST Moving holiday, celebrated 49 days after Easter Sunday.
WHITMONDAY Moving holiday, falling on the day after Pentecost.
CORPUSCHRISTI Moving holiday, celebrated 60 days after Easter Sunday.
JULIANEASTER
MAYDAY Fixed holiday, falls on May, 1st.
ASSUMPTION Fixed holiday, falls on August, 15th.
HALLOWEEN Fixed holiday, falls on October, 31st.
ALLSAINTSDAY Fixed holiday, falls on November, 1st.
ARMISTICE Fixed holiday, falls on November, 11th.
CHRISTMAS Fixed holiday, falls on December, 25th.

Value

returns an object of class c("JD3_SPECIALDAY","JD3_HOLIDAY") (with name of the event, date,
offset...)

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, fixed_day, easter_day

Examples

# To add Easter Monday
special_day("EASTERMONDAY")
# To define a holiday for the day after Christmas, with validity and weight
special_day("CHRISTMAS",

offset = 1, weight = 0.8,
validity = list(start = "2000-01-01", end = "2020-12-01")

)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


100 statisticaltest

statisticaltest Generic Function For ’JDemetra+’ Tests

Description

Generic function to format the results of ’JDemetra+’ tests.

Usage

statisticaltest(val, pval, dist = NULL)

## S3 method for class 'JD3_TEST'
print(x, details = FALSE, ...)

Arguments

val, pval, dist statistical parameters.

x the object to print.

details boolean indicating if the statistical distribution should be printed.

... further arguments (ignored).

Value

c("JD3_TEST", "JD3") object that is a list of three parameters:

• value the statistical value of the test.

• pvalue the p-value of the test.

• distribution the statistical distribution used.

Examples

udr_test <- testofupdownruns(random_t(5, 1000))
udr_test # default print
print(udr_test, details = TRUE) # with the distribution

test <- statisticaltest(val = 45, pval = 0.1)
print(test)



stock_td 101

stock_td Trading day Regressor for Stock series

Description

Allows to generate a specific regressor for correcting trading days effects in Stock series.

Usage

stock_td(frequency, start, length, s, w = 31)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

w indicates day of the month when inventories and other stocks are reported. (to
denote the last day of the month enter 31).

Details

The regressor will have the value -1 if the w-th day is a Sunday, 1 if it is a Monday as 0 otherwise.

Value

Time series (object of class c("ts","mts","matrix")).

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

stock_td(frequency = 12L, start = c(1990L, 1L), length = 480L, w = 1L)

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


102 td

td Trading day regressors without holidays

Description

Allows to generate trading day regressors (as many as defined groups), taking into account 7 or
less different types of days, from Monday to Sunday, but no specific holidays. Regressors are not
corrected for long term mean.

Usage

td(
frequency,
start,
length,
s,
groups = c(1, 2, 3, 4, 5, 6, 0),
contrasts = TRUE

)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

groups Groups of days. The length of the array must be 7. It indicates to what group
each week day belongs. The first item corresponds to Mondays and the last one
to Sundays. The group used for contrasts (usually Sundays) is identified by 0.
The other groups are identified by 1, 2,... n (<= 6). For instance, usual trading
days are defined by c(1, 2, 3, 4, 5, 6, 0), week days by c(1, 1, 1, 1, 1, 0, 0), week
days, Saturdays, Sundays by c(1, 1, 1, 1, 1, 2, 0) etc.

contrasts If true, the variables are defined by contrasts with the 0-group. Otherwise, raw
number of days is provided.

Details

Aggregated values for monthly or quarterly are the numbers of days belonging to a given group.
Contrasts are the differences between the number of days in a given group (1 to 6) and the number
of days in the reference group (0).

Value

Time series (object of class c("ts","mts","matrix")) corresponding to each group, starting with
the 0-group (contrasts = FALSE) or the 1-group (contrasts = TRUE).



td_canovahansen 103

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

calendar_td

Examples

# Monthly regressors for Trading Days: each type of day is different
# contrasts to Sundays (6 series)
regs_td <- td(12, c(2020, 1), 60, groups = c(1, 2, 3, 4, 5, 6, 0), contrasts = TRUE)
# Quarterly regressors for Working Days: week days are similar
# contrasts to week-end days (1 series)
regs_wd <- td(4, c(2020, 1), 60, groups = c(1, 1, 1, 1, 1, 0, 0), contrasts = TRUE)

td_canovahansen Canova-Hansen test for stable trading days

Description

Canova-Hansen test for stable trading days

Usage

td_canovahansen(
s,
differencing,
kernel = c("Bartlett", "Square", "Welch", "Tukey", "Hamming", "Parzen"),
order = NA

)

Arguments

s a ts object that corresponds to the input time series to test.

differencing Differencing lags.

kernel Kernel used to compute the robust covariance matrix.

order The truncation parameter used to compute the robust covariance matrix.

Value

list with the ftest on td, the joint test and the details for the stability of the different days (starting
with Mondays).

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


104 td_f

Examples

s <- log(ABS$X0.2.20.10.M)
td_canovahansen(s, c(1, 12))

td_f Residual Trading Days Test

Description

Residual Trading Days Test

Usage

td_f(
s,
model = c("D1", "DY", "DYD1", "WN", "AIRLINE", "R011", "R100"),
nyears = 0

)

Arguments

s a ts object that corresponds to the input time series to test.

model the model to use for the residuals. See details.

nyears integer that corresponds to the length of the sub series, starting from the end of
the series, to be used for the test: in number of periods (positive value) or years
(negative values). By default (nyears = 0), the entire sample is used.

Details

The function performs a residual seasonality test that is a joint F-Test on the coefficients of trading
days regressors. Several specifications can be used on the model:

• model = "WN" the following model is used:

yt − ȳ = βTDt + εt

• model = "D1" (the default) the following model is used:

∆yt −∆y = β∆TDt + εt

• model = "DY" the following model is used:

∆syt −∆sy = β∆sTDt + εt

• model = "DYD1" the following model is used:

∆s∆yt −∆s∆y = β∆s∆TDt + εt



td_timevarying 105

• model = "AIRLINE" the following model is used:

yt = βTDt + εt with εt ∼ ARIMA(0, 1, 1)(0, 1, 1)

• model = "R011" the following model is used:

yt = βTDt + εt with εt ∼ ARIMA(0, 1, 1)

• model = "R100" the following model is used:

yt = α0 + α1yt−1 + βTDt + εt

Value

a JD3_TEST object with value, p-value and information about the distribution

Examples

td_f(ABS$X0.2.09.10.M)

td_timevarying Likelihood ratio test on time varying trading days

Description

Likelihood ratio test on time varying trading days

Usage

td_timevarying(s, groups = c(1, 2, 3, 4, 5, 6, 0), contrasts = FALSE)

Arguments

s The tested time series

groups The groups of days used to generate the regression variables.

contrasts The covariance matrix of the multivariate random walk model used for the time-
varying coefficients are related to the contrasts if TRUE, on the actual number
of days (all the days are driven by the same variance) if FALSE.

Value

A Chi2 test

Examples

s <- log(ABS$X0.2.20.10.M)
td_timevarying(s)



106 to_tscollection

to_ts Creates a time series object

Description

Creates a time series object

Usage

to_ts(source, id, type = "All")

Arguments

source Source of the time series

id Identifier of the time series (source-dependent)

type Type of the requested information (Data, Metadata...). All by default.

Value

An object of type "JD3_TS". List containing the identifiers, the data and the metadata

Examples

source <- "Txt"
# id is split due to length restrictions
id1 <- "demetra://tsprovider/Txt/20111201/SERIES?datePattern=dd%2FMM%2Fyyyy&delimiter=SEMICOLON&"
id2 <- "file=C%3A%5CDocuments%5CIPI%5CData%5CIPI_nace4.csv#seriesIndex=0"
id <- paste0(id1, id2)

to_ts(source, id)

to_tscollection Creates a collection of time series

Description

Creates a collection of time series

Usage

to_tscollection(source, id, type = "All")



tramoseats_spec_default 107

Arguments

source Source of the collection of time series

id Identifier of the collection of time series (source-dependent)

type Type of the requested information (Data, Metadata...). All by default.

Value

An object of type "JD3_TSCOLLECTION". List containing the identifiers, the metadata and all
the series (data).

Examples

# id is split due to length restrictions
id1 <- "demetra://tsprovider/Txt/20111201/SERIES?datePattern=dd%2FMM%2Fyyyy&delimiter=SEMICOLON&"
id2 <- "file=C%3A%5CDocuments%5CIPI%5CData%5CIPI_nace4.csv#seriesIndex=0"
id <- paste0(id1, id2)
source <- "Txt"
my_collection <- to_tscollection(source, id)

tramoseats_spec_default

Default Tramo-Seats specification

Description

Default Tramo-Seats specification

Usage

tramoseats_spec_default

Format

An object of class JD3_TRAMOSEATS_SPEC of length 3.

Examples

data(tramoseats_spec_default)



108 trigonometric_variables

trigonometric_variables

Trigonometric variables

Description

Computes trigonometric variables at different frequencies.

Usage

trigonometric_variables(frequency, start, length, s, seasonal_frequency = NULL)

Arguments

frequency Frequency of the series, number of periods per year (12, 4, 3, 2...)

start, length First date (array with the first year and the first period, for instance c(1980, 1))
and number of periods of the output variables. Can also be provided with the s
argument

s time series used to get the dates for the trading days variables. If supplied the
parameters frequency, start and length are ignored.

seasonal_frequency

the seasonal frequencies. By default the fundamental seasonal frequency and all
the harmonics are used.

Details

Denote by P the value of frequency (= the period) and f1, ..., fn the frequencies provides by
seasonal_frequency (if seasonal_frequency = NULL then n = ⌊P/2⌋ and fi=i).

trigonometric_variables returns a matrix of size length× (2n).

For each date t associated to the period m (m ∈ [1, P ]), the columns 2i and 2i− 1 are equal to:

cos

(
2π

P
×m× fi

)
and sin

(
2π

P
×m× fi

)
Take for example the case when the first date (date) is a January, frequency = 12 (monthly time
series), length = 12 and seasonal_frequency = NULL. The first frequency, λ1 = 2π/12 represents
the fundamental seasonal frequency and the other frequencies (λ2 = 2π/12×2, ..., λ6 = 2π/12×6)
are the five harmonics. The output matrix will be equal to:

cos(λ1) sin(λ1) · · · cos(λ6) sin(λ6)
cos(λ1 × 2) sin(λ1 × 2) · · · cos(λ6 × 2) sin(λ6 × 2)

...
... · · ·

...
...

cos(λ1 × 12) sin(λ1 × 12) · · · cos(λ6 × 12) sin(λ6 × 12)


Value

a mts object with 2 columns



tsdata_of 109

Examples

trigonometric_variables(
frequency = 12,
length = 480,
start = c(1990, 1),
seasonal_frequency = 3

)

tsdata_of Create ts object with values and dates

Description

Create ts object with values and dates

Usage

tsdata_of(values, dates)

Arguments

values Values of the time series

dates Dates of the values (could be any date inside the considered period)

Value

A ts object. The frequency will be identified automatically and missing values will be added in
need be. The identified frequency will be the lowest frequency that match the figures. The provided
data can contain missing values (NA)

Examples

# Annual series
s <- tsdata_of(c(1, 2, 3, 4), c("1990-01-01", "1995-01-01", "1996-01-01",

"2000-11-01"))
# Quarterly series
t <- tsdata_of(c(1, 2, 3, NA, 4), c("1990-01-01", "1995-01-01", "1996-01-01",

"2000-08-01", "2000-11-01"))



110 ts_interpolate

ts_adjust Multiplicative adjustment of a time series for leap year / length of
periods

Description

Multiplicative adjustment of a time series for leap year / length of periods

Usage

ts_adjust(s, method = c("LeapYear", "LengthOfPeriod"), reverse = FALSE)

Arguments

s The original time series
method "LeapYear": correction for leap year "LengthOfPeriod": correction for the

length of periods
reverse Adjustment or reverse operation

Value

The interpolated series

Examples

y <- ABS$X0.2.09.10.M
ts_adjust(y)
# with reverse we can find the
all.equal(ts_adjust(ts_adjust(y), reverse = TRUE), y)

ts_interpolate Interpolation of a time series with missing values

Description

Interpolation of a time series with missing values

Usage

ts_interpolate(s, method = c("airline", "average"))

Arguments

s The original time series
method airline: interpolation through an estimated airline model average: interpolation

using the average of the previous and next non missing values



ucarima_canonical 111

Value

The interpolated series

Examples

ts_interpolate(AirPassengers)

x <- AirPassengers
x[50:60] <- NA
ts_interpolate(x)

ucarima_canonical Makes a UCARIMA model canonical

Description

More specifically, put all the noise of the components in one dedicated component

Usage

ucarima_canonical(ucm, cmp = 0, adjust = TRUE)

Arguments

ucm An UCARIMA model returned by ucarima_model().

cmp Index of the component that will contain the noises; 0 if a new component with
all the noises will be added to the model

adjust If TRUE, some noise could be added to the model to ensure that all the compo-
nents has positive (pseudo-)spectrum

Value

A new UCARIMA model

Examples

mod1 <- arima_model("trend", delta = c(1, -2, 1))
mod2 <- arima_model("noise", var = 1600)
hp <- ucarima_model(components = list(mod1, mod2))
hpc <- ucarima_canonical(hp, cmp = 2)



112 ucarima_model

ucarima_estimate Estimate UCARIMA Model

Description

Estimate UCARIMA Model

Usage

ucarima_estimate(x, ucm, stdev = TRUE)

Arguments

x Univariate time series

ucm An UCARIMA model returned by ucarima_model().

stdev TRUE if standard deviation of the components are computed

Value

A matrix containing the different components and their standard deviations if stdev is TRUE.

Examples

mod1 <- arima_model("trend", delta = c(1, -2, 1))
mod2 <- arima_model("noise", var = 16)
hp <- ucarima_model(components = list(mod1, mod2))
s <- log(aggregate(Retail$AutomobileDealers))
all <- ucarima_estimate(s, hp, stdev = TRUE)
plot(s, type = "l")
t <- ts(all[, 1], frequency = frequency(s), start = start(s))
lines(t, col = "blue")

ucarima_model Creates an UCARIMA model, which is composed of ARIMA models
with independent innovations.

Description

Creates an UCARIMA model, which is composed of ARIMA models with independent innovations.

Usage

ucarima_model(model = NULL, components, complements = NULL, checkmodel = FALSE)



ucarima_wk 113

Arguments

model The reduced model. Usually not provided.

components The ARIMA models representing the components

complements Complements of (some) components. Usually not provided

checkmodel When the model is provided and checkmodel is TRUE, we check that it indeed
corresponds to the reduced form of the components; similar controls are applied
on complements. Currently not implemented

Value

A list with the reduced model, the components and their complements

Examples

mod1 <- arima_model("trend", delta = c(1, -2, 1))
mod2 <- arima_model("noise", var = 1600)
hp <- ucarima_model(components = list(mod1, mod2))
print(hp$model)

ucarima_wk Wiener Kolmogorov Estimators

Description

Wiener Kolmogorov Estimators

Usage

ucarima_wk(ucm, cmp, signal = TRUE, nspectrum = 601, nwk = 300)

Arguments

ucm An UCARIMA model returned by ucarima_model().

cmp Index of the component for which we want to compute the filter

signal TRUE for the signal (component), FALSE for the noise (complement)

nspectrum Number of points used to compute the (pseudo-) spectrum of the estimator

nwk Number of weights of the Wiener-Kolmogorov filter returned in the result

Value

A list with the (pseudo-)spectrum, the weights of the filter and the squared-gain function (with the
same number of points as the spectrum)



114 weighted_calendar

Examples

mod1 <- arima_model("trend", delta = c(1, -2, 1))
mod2 <- arima_model("noise", var = 1600)
hp <- ucarima_model(components = list(mod1, mod2))
wk1 <- ucarima_wk(hp, 1, nwk = 50)
wk2 <- ucarima_wk(hp, 2)
plot(wk1$filter, type = "h")

weighted_calendar Create a Composite Calendar

Description

Allows to combine two or more calendars into one calendar, weighting all the holidays of each of
them.

Usage

weighted_calendar(calendars, weights)

Arguments

calendars list of calendars.

weights vector of weights associated to each calendar.

Details

Composite calendars are useful for a series that including data from more than one country/region.
They can be used, for example, to create the calendar for the European Union or to create the
national calendar for a country, in which regional holidays are celebrated. For example, in Ger-
many public holidays are determined by the federal states. Therefore, Epiphany is celebrated only
in Baden-Wurttemberg, Bavaria and in Saxony-Anhalt, while from 1994 Day of Repentance and
Prayer is celebrated only in Saxony.

Value

returns an object of class c("JD3_WEIGHTEDCALENDAR", "JD3_CALENDARDEFINITION")

References

More information on calendar correction in JDemetra+ online documentation: https://jdemetra-new-documentation.
netlify.app/a-calendar-correction

See Also

national_calendar, chained_calendar

https://jdemetra-new-documentation.netlify.app/a-calendar-correction
https://jdemetra-new-documentation.netlify.app/a-calendar-correction


x13_spec_default 115

Examples

Belgium <- national_calendar(list(special_day("NEWYEAR"), fixed_day(7, 21)))
France <- national_calendar(list(special_day("NEWYEAR"), fixed_day(7, 14)))
composite_calendar <- weighted_calendar(list(France, Belgium), weights = c(1, 2))

x13_spec_default Default X13 specification

Description

Default X13 specification

Usage

x13_spec_default

Format

An object of class JD3_X13_SPEC of length 3.

Examples

data(x13_spec_default)



Index

∗ datasets
.r2jd_tsdata, 6
ABS, 12
Births, 21
Electricity, 38
Exports, 39
Imports, 42
Retail, 63
tramoseats_spec_default, 107
x13_spec_default, 115

.add_ud_var, 4

.enum_extract (.r2jd_tsdata), 6

.enum_of (.r2jd_tsdata), 6

.enum_sextract (.r2jd_tsdata), 6

.enum_sof (.r2jd_tsdata), 6

.jd2p_calendars (.r2jd_tsdata), 6

.jd2p_context (.r2jd_tsdata), 6

.jd2p_variables (.r2jd_tsdata), 6

.jd2r_calendars (.r2jd_tsdata), 6

.jd2r_lts (.r2jd_tsdata), 6

.jd2r_matrix (.r2jd_tsdata), 6

.jd2r_modellingcontext (.r2jd_tsdata), 6

.jd2r_mts (.r2jd_tsdata), 6

.jd2r_ts (.r2jd_tsdata), 6

.jd2r_tscollection (.r2jd_tsdata), 6

.jd2r_tsdata (.r2jd_tsdata), 6

.jd2r_ucarima (.r2jd_tsdata), 6

.jd2r_variables (.r2jd_tsdata), 6

.jd3_object (.r2jd_tsdata), 6

.jdomain (.r2jd_tsdata), 6

.likelihood, 5

.p2jd_calendar (.r2jd_tsdata), 6

.p2jd_calendars (.r2jd_tsdata), 6

.p2jd_context (.r2jd_tsdata), 6

.p2jd_variables (.r2jd_tsdata), 6

.p2r_arima (.r2jd_tsdata), 6

.p2r_calendars (.r2jd_tsdata), 6

.p2r_context (.r2jd_tsdata), 6

.p2r_datasupplier (.r2jd_tsdata), 6

.p2r_datasuppliers (.r2jd_tsdata), 6

.p2r_date (.r2jd_tsdata), 6

.p2r_iv (.r2jd_tsdata), 6

.p2r_ivs (.r2jd_tsdata), 6

.p2r_likelihood (.r2jd_tsdata), 6

.p2r_matrix (.r2jd_tsdata), 6

.p2r_metadata (.r2jd_tsdata), 6

.p2r_moniker (.r2jd_tsdata), 6

.p2r_outliers (.r2jd_tsdata), 6

.p2r_parameter (.r2jd_tsdata), 6

.p2r_parameters (.r2jd_tsdata), 6

.p2r_parameters_estimation
(.r2jd_tsdata), 6

.p2r_parameters_rslt (.r2jd_tsdata), 6

.p2r_parameters_rsltx (.r2jd_tsdata), 6

.p2r_ramps (.r2jd_tsdata), 6

.p2r_regarima_rslts (.r2jd_tsdata), 6

.p2r_sa_decomposition (.r2jd_tsdata), 6

.p2r_sa_diagnostics (.r2jd_tsdata), 6

.p2r_sequences (.r2jd_tsdata), 6

.p2r_span (.r2jd_tsdata), 6

.p2r_spec_benchmarking (.r2jd_tsdata), 6

.p2r_spec_sarima (.r2jd_tsdata), 6

.p2r_test (.r2jd_tsdata), 6

.p2r_ts (.r2jd_tsdata), 6

.p2r_tscollection (.r2jd_tsdata), 6

.p2r_tsdata (.r2jd_tsdata), 6

.p2r_ucarima (.r2jd_tsdata), 6

.p2r_uservars (.r2jd_tsdata), 6

.p2r_variables (.r2jd_tsdata), 6

.proc_bool (.r2jd_tsdata), 6

.proc_data (.r2jd_tsdata), 6

.proc_desc (.r2jd_tsdata), 6

.proc_dictionary (.r2jd_tsdata), 6

.proc_dictionary2 (.r2jd_tsdata), 6

.proc_int (.r2jd_tsdata), 6

.proc_likelihood (.r2jd_tsdata), 6

.proc_matrix (.r2jd_tsdata), 6

.proc_numeric (.r2jd_tsdata), 6

116



INDEX 117

.proc_parameter (.r2jd_tsdata), 6

.proc_parameters (.r2jd_tsdata), 6

.proc_str (.r2jd_tsdata), 6

.proc_test (.r2jd_tsdata), 6

.proc_ts (.r2jd_tsdata), 6

.proc_vector (.r2jd_tsdata), 6

.r2jd_calendars (.r2jd_tsdata), 6

.r2jd_make_ts (.r2jd_tsdata), 6

.r2jd_make_tscollection (.r2jd_tsdata),
6

.r2jd_matrix (.r2jd_tsdata), 6

.r2jd_modellingcontext (.r2jd_tsdata), 6

.r2jd_sarima (.r2jd_tsdata), 6

.r2jd_tmp_ts (.r2jd_tsdata), 6

.r2jd_ts (.r2jd_tsdata), 6

.r2jd_tscollection (.r2jd_tsdata), 6

.r2jd_tsdata, 6

.r2jd_tsdomain (.r2jd_tsdata), 6

.r2jd_variables (.r2jd_tsdata), 6

.r2p_calendar (.r2jd_tsdata), 6

.r2p_calendars (.r2jd_tsdata), 6

.r2p_context (.r2jd_tsdata), 6

.r2p_datasupplier (.r2jd_tsdata), 6

.r2p_datasuppliers (.r2jd_tsdata), 6

.r2p_date (.r2jd_tsdata), 6

.r2p_iv (.r2jd_tsdata), 6

.r2p_ivs (.r2jd_tsdata), 6

.r2p_lparameters (.r2jd_tsdata), 6

.r2p_metadata (.r2jd_tsdata), 6

.r2p_moniker (.r2jd_tsdata), 6

.r2p_outliers (.r2jd_tsdata), 6

.r2p_parameter (.r2jd_tsdata), 6

.r2p_parameters (.r2jd_tsdata), 6

.r2p_ramps (.r2jd_tsdata), 6

.r2p_sequences (.r2jd_tsdata), 6

.r2p_span (.r2jd_tsdata), 6

.r2p_spec_benchmarking (.r2jd_tsdata), 6

.r2p_spec_sarima (.r2jd_tsdata), 6

.r2p_ts (.r2jd_tsdata), 6

.r2p_tscollection (.r2jd_tsdata), 6

.r2p_tsdata (.r2jd_tsdata), 6

.r2p_uservars (.r2jd_tsdata), 6

.tsmoniker, 11

ABS, 12
add_outlier, 12, 92
add_ramp (add_outlier), 12
add_usrdefvar, 13, 14, 43, 44, 50, 92
aggregate, 16

ao_variable (outliers_variables), 54
arima_difference, 17
arima_model, 18
arima_model(), 19
arima_properties, 18
arima_sum, 19
autocorrelations, 20
autocorrelations_inverse

(autocorrelations), 20
autocorrelations_partial

(autocorrelations), 20

Births, 21
bowmanshenton (normality_tests), 53
bsplines, 22

calendar_td, 22, 38, 42, 49, 94, 101, 103
cdf_chi2 (density_chi2), 27
cdf_gamma (density_gamma), 28
cdf_inverse_gamma

(density_inverse_gamma), 29
cdf_inverse_gaussian

(density_inverse_gaussian), 29
cdf_t (density_t), 30
chained_calendar, 24, 52, 114
chi2distribution (density_chi2), 27
clean_extremities, 25
compare_annual_totals, 26
current_java_version (.r2jd_tsdata), 6

data_to_ts, 26
daysOf, 27
density_chi2, 27
density_gamma, 28
density_inverse_gamma, 29
density_inverse_gaussian, 29
density_t, 30
deprecated-rjd3toolkit, 31
diagnostics, 31
dictionary, 32
differences, 33
differencing_fast, 33
do_stationary, 34
doornikhansen (normality_tests), 53

easter_dates, 35
easter_day, 35, 36, 40, 41, 88, 98, 99
easter_variable, 37, 88
Electricity, 38



118 INDEX

Exports, 39

fixed_day, 36, 39, 41, 98, 99
fixed_week_day, 36, 40

gammadistribution (density_gamma), 28
get_date_max (.r2jd_tsdata), 6
get_date_min (.r2jd_tsdata), 6

holidays, 41

Imports, 42
intervention_variable, 13, 15, 43, 50
invgammadistribution

(density_inverse_gamma), 29
invgaussiandistribution

(density_inverse_gaussian), 29

jarquebera (normality_tests), 53
jd3_print, 45
jd3_utilities (.r2jd_tsdata), 6
julianeaster_variable

(easter_variable), 37

kurtosis (normality_tests), 53

ljungbox, 46
long_term_mean, 47
lp_variable, 48
ls_variable (outliers_variables), 54

mad, 49
minimal_java_version (.r2jd_tsdata), 6
modelling_context, 14, 43, 44, 50, 93, 94
monotonic_cspline, 51

national_calendar, 24, 25, 35, 36, 40–42,
51, 98, 99, 114

natural_cspline, 52
normality_tests, 53

outliers_variables, 54

periodic_bsplines, 56
periodic_contrasts (periodic_dummies),

58
periodic_cspline, 56
periodic_csplines, 57
periodic_dummies, 58
plot.JD3_SADECOMPOSITION

(sadecomposition), 65

print.JD3_ARIMA (jd3_print), 45
print.JD3_CALENDAR (print_calendars), 59
print.JD3_CHAINEDCALENDAR

(print_calendars), 59
print.JD3_EASTERDAY (print_calendars),

59
print.JD3_FIXEDDAY (print_calendars), 59
print.JD3_FIXEDWEEKDAY

(print_calendars), 59
print.JD3_LIKELIHOOD (jd3_print), 45
print.JD3_REGARIMA_RSLTS (jd3_print), 45
print.JD3_SADECOMPOSITION

(sadecomposition), 65
print.JD3_SARIMA (jd3_print), 45
print.JD3_SARIMA_ESTIMATION

(jd3_print), 45
print.JD3_SINGLEDAY (print_calendars),

59
print.JD3_SPAN (jd3_print), 45
print.JD3_SPECIALDAY (print_calendars),

59
print.JD3_TEST (statisticaltest), 100
print.JD3_UCARIMA (jd3_print), 45
print.JD3_WEIGHTEDCALENDAR

(print_calendars), 59
print_calendars, 59

r2jd_calendarts, 60
ramp_variable, 60
random_chi2 (density_chi2), 27
random_gamma (density_gamma), 28
random_inverse_gamma

(density_inverse_gamma), 29
random_inverse_gaussian

(density_inverse_gaussian), 29
random_t (density_t), 30
rangemean_tstat, 61
reload_dictionaries, 63
remove_outlier (add_outlier), 12
remove_ramp (add_outlier), 12
result (dictionary), 32
Retail, 63
runstests, 64

sa.decomposition
(deprecated-rjd3toolkit), 31

sa_decomposition (sadecomposition), 65
sa_decomposition(), 31
sa_preprocessing, 71



INDEX 119

sadecomposition, 65
sarima_decompose, 66
sarima_estimate, 67
sarima_hannan_rissanen, 68
sarima_model, 69
sarima_model(), 70
sarima_properties, 70
sarima_random, 70
seasonality_canovahansen, 71
seasonality_canovahansen_trigs, 72
seasonality_combined, 73
seasonality_f, 74
seasonality_friedman, 75
seasonality_kruskalwallis, 75
seasonality_modified_qs, 76
seasonality_periodogram, 77
seasonality_qs, 78
set_arima, 78, 82, 84, 89
set_automodel, 80, 80
set_basic, 83, 89
set_benchmarking, 85
set_easter, 86, 92
set_estimate, 84, 88
set_outlier, 90, 97
set_tradingdays, 14, 15, 92, 97
set_transform, 80, 82, 96
single_day, 97
skewness (normality_tests), 53
so_variable (outliers_variables), 54
special_day, 36, 40, 41, 98, 98
statisticaltest, 53, 100
statisticaltest(), 46, 64, 74–78
stock_td, 101
studentdistribution (density_t), 30

tc_variable (outliers_variables), 54
td, 24, 102
td_canovahansen, 103
td_f, 104
td_timevarying, 105
testofruns (runstests), 64
testofupdownruns (runstests), 64
to_ts, 106
to_tscollection, 106
tramoseats_spec_default, 107
trigonometric_variables, 108
ts_adjust, 110
ts_interpolate, 110
tsdata_of, 109

ucarima_canonical, 111
ucarima_estimate, 112
ucarima_model, 112
ucarima_model(), 111–113
ucarima_wk, 113
user_defined (dictionary), 32

weighted_calendar, 25, 42, 52, 114

x13_spec_default, 115


	.add_ud_var
	.likelihood
	.r2jd_tsdata
	.tsmoniker
	ABS
	add_outlier
	add_usrdefvar
	aggregate
	arima_difference
	arima_model
	arima_properties
	arima_sum
	autocorrelations
	Births
	bsplines
	calendar_td
	chained_calendar
	clean_extremities
	compare_annual_totals
	data_to_ts
	daysOf
	density_chi2
	density_gamma
	density_inverse_gamma
	density_inverse_gaussian
	density_t
	deprecated-rjd3toolkit
	diagnostics
	dictionary
	differences
	differencing_fast
	do_stationary
	easter_dates
	easter_day
	easter_variable
	Electricity
	Exports
	fixed_day
	fixed_week_day
	holidays
	Imports
	intervention_variable
	jd3_print
	ljungbox
	long_term_mean
	lp_variable
	mad
	modelling_context
	monotonic_cspline
	national_calendar
	natural_cspline
	normality_tests
	outliers_variables
	periodic_bsplines
	periodic_cspline
	periodic_csplines
	periodic_dummies
	print_calendars
	r2jd_calendarts
	ramp_variable
	rangemean_tstat
	reload_dictionaries
	Retail
	runstests
	sadecomposition
	sarima_decompose
	sarima_estimate
	sarima_hannan_rissanen
	sarima_model
	sarima_properties
	sarima_random
	sa_preprocessing
	seasonality_canovahansen
	seasonality_canovahansen_trigs
	seasonality_combined
	seasonality_f
	seasonality_friedman
	seasonality_kruskalwallis
	seasonality_modified_qs
	seasonality_periodogram
	seasonality_qs
	set_arima
	set_automodel
	set_basic
	set_benchmarking
	set_easter
	set_estimate
	set_outlier
	set_tradingdays
	set_transform
	single_day
	special_day
	statisticaltest
	stock_td
	td
	td_canovahansen
	td_f
	td_timevarying
	to_ts
	to_tscollection
	tramoseats_spec_default
	trigonometric_variables
	tsdata_of
	ts_adjust
	ts_interpolate
	ucarima_canonical
	ucarima_estimate
	ucarima_model
	ucarima_wk
	weighted_calendar
	x13_spec_default
	Index

